| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetero.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
| 2 |
|
mdetero.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 3 |
|
mdetero.p |
⊢ + = ( +g ‘ 𝑅 ) |
| 4 |
|
mdetero.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 5 |
|
mdetero.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 6 |
|
mdetero.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 7 |
|
mdetero.x |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) |
| 8 |
|
mdetero.y |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐾 ) |
| 9 |
|
mdetero.z |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑍 ∈ 𝐾 ) |
| 10 |
|
mdetero.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝐾 ) |
| 11 |
|
mdetero.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) |
| 12 |
|
mdetero.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑁 ) |
| 13 |
|
mdetero.ij |
⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) |
| 14 |
7
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) |
| 15 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 16 |
5 15
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 17 |
16
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 18 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑊 ∈ 𝐾 ) |
| 19 |
8
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐾 ) |
| 20 |
2 4
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑊 · 𝑌 ) ∈ 𝐾 ) |
| 21 |
17 18 19 20
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑊 · 𝑌 ) ∈ 𝐾 ) |
| 22 |
19 9
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ∈ 𝐾 ) |
| 23 |
1 2 3 5 6 14 21 22 11
|
mdetrlin2 |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + ( 𝑊 · 𝑌 ) ) , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) = ( ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) + ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑊 · 𝑌 ) , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ) ) |
| 24 |
1 2 4 5 6 19 22 10 11
|
mdetrsca2 |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑊 · 𝑌 ) , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) = ( 𝑊 · ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ) ) |
| 25 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 26 |
1 2 25 5 6 8 9 11 12 13
|
mdetralt2 |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 27 |
26
|
oveq2d |
⊢ ( 𝜑 → ( 𝑊 · ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ) = ( 𝑊 · ( 0g ‘ 𝑅 ) ) ) |
| 28 |
2 4 25
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐾 ) → ( 𝑊 · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 29 |
16 10 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 30 |
24 27 29
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑊 · 𝑌 ) , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 31 |
30
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) + ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑊 · 𝑌 ) , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ) = ( ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) + ( 0g ‘ 𝑅 ) ) ) |
| 32 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 33 |
16 32
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 34 |
|
eqid |
⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) |
| 35 |
|
eqid |
⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
| 36 |
1 34 35 2
|
mdetf |
⊢ ( 𝑅 ∈ CRing → 𝐷 : ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ⟶ 𝐾 ) |
| 37 |
5 36
|
syl |
⊢ ( 𝜑 → 𝐷 : ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ⟶ 𝐾 ) |
| 38 |
14 22
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ∈ 𝐾 ) |
| 39 |
34 2 35 6 5 38
|
matbas2d |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 40 |
37 39
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ∈ 𝐾 ) |
| 41 |
2 3 25
|
grprid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ∈ 𝐾 ) → ( ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) + ( 0g ‘ 𝑅 ) ) = ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ) |
| 42 |
33 40 41
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) + ( 0g ‘ 𝑅 ) ) = ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ) |
| 43 |
23 31 42
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + ( 𝑊 · 𝑌 ) ) , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) = ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑌 , 𝑍 ) ) ) ) ) |