| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meetle.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | meetle.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | meetle.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | meetle.k | ⊢ ( 𝜑  →  𝐾  ∈  Poset ) | 
						
							| 5 |  | meetle.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | meetle.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | meetle.z | ⊢ ( 𝜑  →  𝑍  ∈  𝐵 ) | 
						
							| 8 |  | meetle.e | ⊢ ( 𝜑  →  〈 𝑋 ,  𝑌 〉  ∈  dom   ∧  ) | 
						
							| 9 |  | breq1 | ⊢ ( 𝑧  =  𝑍  →  ( 𝑧  ≤  𝑋  ↔  𝑍  ≤  𝑋 ) ) | 
						
							| 10 |  | breq1 | ⊢ ( 𝑧  =  𝑍  →  ( 𝑧  ≤  𝑌  ↔  𝑍  ≤  𝑌 ) ) | 
						
							| 11 | 9 10 | anbi12d | ⊢ ( 𝑧  =  𝑍  →  ( ( 𝑧  ≤  𝑋  ∧  𝑧  ≤  𝑌 )  ↔  ( 𝑍  ≤  𝑋  ∧  𝑍  ≤  𝑌 ) ) ) | 
						
							| 12 |  | breq1 | ⊢ ( 𝑧  =  𝑍  →  ( 𝑧  ≤  ( 𝑋  ∧  𝑌 )  ↔  𝑍  ≤  ( 𝑋  ∧  𝑌 ) ) ) | 
						
							| 13 | 11 12 | imbi12d | ⊢ ( 𝑧  =  𝑍  →  ( ( ( 𝑧  ≤  𝑋  ∧  𝑧  ≤  𝑌 )  →  𝑧  ≤  ( 𝑋  ∧  𝑌 ) )  ↔  ( ( 𝑍  ≤  𝑋  ∧  𝑍  ≤  𝑌 )  →  𝑍  ≤  ( 𝑋  ∧  𝑌 ) ) ) ) | 
						
							| 14 | 1 2 3 4 5 6 8 | meetlem | ⊢ ( 𝜑  →  ( ( ( 𝑋  ∧  𝑌 )  ≤  𝑋  ∧  ( 𝑋  ∧  𝑌 )  ≤  𝑌 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑧  ≤  𝑋  ∧  𝑧  ≤  𝑌 )  →  𝑧  ≤  ( 𝑋  ∧  𝑌 ) ) ) ) | 
						
							| 15 | 14 | simprd | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐵 ( ( 𝑧  ≤  𝑋  ∧  𝑧  ≤  𝑌 )  →  𝑧  ≤  ( 𝑋  ∧  𝑌 ) ) ) | 
						
							| 16 | 13 15 7 | rspcdva | ⊢ ( 𝜑  →  ( ( 𝑍  ≤  𝑋  ∧  𝑍  ≤  𝑌 )  →  𝑍  ≤  ( 𝑋  ∧  𝑌 ) ) ) | 
						
							| 17 | 1 2 3 4 5 6 8 | lemeet1 | ⊢ ( 𝜑  →  ( 𝑋  ∧  𝑌 )  ≤  𝑋 ) | 
						
							| 18 | 1 3 4 5 6 8 | meetcl | ⊢ ( 𝜑  →  ( 𝑋  ∧  𝑌 )  ∈  𝐵 ) | 
						
							| 19 | 1 2 | postr | ⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑍  ∈  𝐵  ∧  ( 𝑋  ∧  𝑌 )  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) )  →  ( ( 𝑍  ≤  ( 𝑋  ∧  𝑌 )  ∧  ( 𝑋  ∧  𝑌 )  ≤  𝑋 )  →  𝑍  ≤  𝑋 ) ) | 
						
							| 20 | 4 7 18 5 19 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑍  ≤  ( 𝑋  ∧  𝑌 )  ∧  ( 𝑋  ∧  𝑌 )  ≤  𝑋 )  →  𝑍  ≤  𝑋 ) ) | 
						
							| 21 | 17 20 | mpan2d | ⊢ ( 𝜑  →  ( 𝑍  ≤  ( 𝑋  ∧  𝑌 )  →  𝑍  ≤  𝑋 ) ) | 
						
							| 22 | 1 2 3 4 5 6 8 | lemeet2 | ⊢ ( 𝜑  →  ( 𝑋  ∧  𝑌 )  ≤  𝑌 ) | 
						
							| 23 | 1 2 | postr | ⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑍  ∈  𝐵  ∧  ( 𝑋  ∧  𝑌 )  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑍  ≤  ( 𝑋  ∧  𝑌 )  ∧  ( 𝑋  ∧  𝑌 )  ≤  𝑌 )  →  𝑍  ≤  𝑌 ) ) | 
						
							| 24 | 4 7 18 6 23 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑍  ≤  ( 𝑋  ∧  𝑌 )  ∧  ( 𝑋  ∧  𝑌 )  ≤  𝑌 )  →  𝑍  ≤  𝑌 ) ) | 
						
							| 25 | 22 24 | mpan2d | ⊢ ( 𝜑  →  ( 𝑍  ≤  ( 𝑋  ∧  𝑌 )  →  𝑍  ≤  𝑌 ) ) | 
						
							| 26 | 21 25 | jcad | ⊢ ( 𝜑  →  ( 𝑍  ≤  ( 𝑋  ∧  𝑌 )  →  ( 𝑍  ≤  𝑋  ∧  𝑍  ≤  𝑌 ) ) ) | 
						
							| 27 | 16 26 | impbid | ⊢ ( 𝜑  →  ( ( 𝑍  ≤  𝑋  ∧  𝑍  ≤  𝑌 )  ↔  𝑍  ≤  ( 𝑋  ∧  𝑌 ) ) ) |