| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meetle.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | meetle.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | meetle.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | meetle.k |  |-  ( ph -> K e. Poset ) | 
						
							| 5 |  | meetle.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | meetle.y |  |-  ( ph -> Y e. B ) | 
						
							| 7 |  | meetle.z |  |-  ( ph -> Z e. B ) | 
						
							| 8 |  | meetle.e |  |-  ( ph -> <. X , Y >. e. dom ./\ ) | 
						
							| 9 |  | breq1 |  |-  ( z = Z -> ( z .<_ X <-> Z .<_ X ) ) | 
						
							| 10 |  | breq1 |  |-  ( z = Z -> ( z .<_ Y <-> Z .<_ Y ) ) | 
						
							| 11 | 9 10 | anbi12d |  |-  ( z = Z -> ( ( z .<_ X /\ z .<_ Y ) <-> ( Z .<_ X /\ Z .<_ Y ) ) ) | 
						
							| 12 |  | breq1 |  |-  ( z = Z -> ( z .<_ ( X ./\ Y ) <-> Z .<_ ( X ./\ Y ) ) ) | 
						
							| 13 | 11 12 | imbi12d |  |-  ( z = Z -> ( ( ( z .<_ X /\ z .<_ Y ) -> z .<_ ( X ./\ Y ) ) <-> ( ( Z .<_ X /\ Z .<_ Y ) -> Z .<_ ( X ./\ Y ) ) ) ) | 
						
							| 14 | 1 2 3 4 5 6 8 | meetlem |  |-  ( ph -> ( ( ( X ./\ Y ) .<_ X /\ ( X ./\ Y ) .<_ Y ) /\ A. z e. B ( ( z .<_ X /\ z .<_ Y ) -> z .<_ ( X ./\ Y ) ) ) ) | 
						
							| 15 | 14 | simprd |  |-  ( ph -> A. z e. B ( ( z .<_ X /\ z .<_ Y ) -> z .<_ ( X ./\ Y ) ) ) | 
						
							| 16 | 13 15 7 | rspcdva |  |-  ( ph -> ( ( Z .<_ X /\ Z .<_ Y ) -> Z .<_ ( X ./\ Y ) ) ) | 
						
							| 17 | 1 2 3 4 5 6 8 | lemeet1 |  |-  ( ph -> ( X ./\ Y ) .<_ X ) | 
						
							| 18 | 1 3 4 5 6 8 | meetcl |  |-  ( ph -> ( X ./\ Y ) e. B ) | 
						
							| 19 | 1 2 | postr |  |-  ( ( K e. Poset /\ ( Z e. B /\ ( X ./\ Y ) e. B /\ X e. B ) ) -> ( ( Z .<_ ( X ./\ Y ) /\ ( X ./\ Y ) .<_ X ) -> Z .<_ X ) ) | 
						
							| 20 | 4 7 18 5 19 | syl13anc |  |-  ( ph -> ( ( Z .<_ ( X ./\ Y ) /\ ( X ./\ Y ) .<_ X ) -> Z .<_ X ) ) | 
						
							| 21 | 17 20 | mpan2d |  |-  ( ph -> ( Z .<_ ( X ./\ Y ) -> Z .<_ X ) ) | 
						
							| 22 | 1 2 3 4 5 6 8 | lemeet2 |  |-  ( ph -> ( X ./\ Y ) .<_ Y ) | 
						
							| 23 | 1 2 | postr |  |-  ( ( K e. Poset /\ ( Z e. B /\ ( X ./\ Y ) e. B /\ Y e. B ) ) -> ( ( Z .<_ ( X ./\ Y ) /\ ( X ./\ Y ) .<_ Y ) -> Z .<_ Y ) ) | 
						
							| 24 | 4 7 18 6 23 | syl13anc |  |-  ( ph -> ( ( Z .<_ ( X ./\ Y ) /\ ( X ./\ Y ) .<_ Y ) -> Z .<_ Y ) ) | 
						
							| 25 | 22 24 | mpan2d |  |-  ( ph -> ( Z .<_ ( X ./\ Y ) -> Z .<_ Y ) ) | 
						
							| 26 | 21 25 | jcad |  |-  ( ph -> ( Z .<_ ( X ./\ Y ) -> ( Z .<_ X /\ Z .<_ Y ) ) ) | 
						
							| 27 | 16 26 | impbid |  |-  ( ph -> ( ( Z .<_ X /\ Z .<_ Y ) <-> Z .<_ ( X ./\ Y ) ) ) |