| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfmembpart2 | ⊢ (  MembPart  𝐴  ↔  (  ElDisj  𝐴  ∧  ¬  ∅  ∈  𝐴 ) ) | 
						
							| 2 |  | n0el2 | ⊢ ( ¬  ∅  ∈  𝐴  ↔  dom  ( ◡  E   ↾  𝐴 )  =  𝐴 ) | 
						
							| 3 | 2 | biimpi | ⊢ ( ¬  ∅  ∈  𝐴  →  dom  ( ◡  E   ↾  𝐴 )  =  𝐴 ) | 
						
							| 4 | 3 | ad2antll | ⊢ ( ( 𝐵  ∈  𝑉  ∧  (  ElDisj  𝐴  ∧  ¬  ∅  ∈  𝐴 ) )  →  dom  ( ◡  E   ↾  𝐴 )  =  𝐴 ) | 
						
							| 5 | 4 | eleq2d | ⊢ ( ( 𝐵  ∈  𝑉  ∧  (  ElDisj  𝐴  ∧  ¬  ∅  ∈  𝐴 ) )  →  ( 𝑢  ∈  dom  ( ◡  E   ↾  𝐴 )  ↔  𝑢  ∈  𝐴 ) ) | 
						
							| 6 |  | eldisjlem19 | ⊢ ( 𝐵  ∈  𝑉  →  (  ElDisj  𝐴  →  ( ( 𝑢  ∈  dom  ( ◡  E   ↾  𝐴 )  ∧  𝐵  ∈  𝑢 )  →  𝑢  =  [ 𝐵 ]  ∼  𝐴 ) ) ) | 
						
							| 7 | 6 | adantrd | ⊢ ( 𝐵  ∈  𝑉  →  ( (  ElDisj  𝐴  ∧  ¬  ∅  ∈  𝐴 )  →  ( ( 𝑢  ∈  dom  ( ◡  E   ↾  𝐴 )  ∧  𝐵  ∈  𝑢 )  →  𝑢  =  [ 𝐵 ]  ∼  𝐴 ) ) ) | 
						
							| 8 | 7 | imp | ⊢ ( ( 𝐵  ∈  𝑉  ∧  (  ElDisj  𝐴  ∧  ¬  ∅  ∈  𝐴 ) )  →  ( ( 𝑢  ∈  dom  ( ◡  E   ↾  𝐴 )  ∧  𝐵  ∈  𝑢 )  →  𝑢  =  [ 𝐵 ]  ∼  𝐴 ) ) | 
						
							| 9 | 8 | expd | ⊢ ( ( 𝐵  ∈  𝑉  ∧  (  ElDisj  𝐴  ∧  ¬  ∅  ∈  𝐴 ) )  →  ( 𝑢  ∈  dom  ( ◡  E   ↾  𝐴 )  →  ( 𝐵  ∈  𝑢  →  𝑢  =  [ 𝐵 ]  ∼  𝐴 ) ) ) | 
						
							| 10 | 5 9 | sylbird | ⊢ ( ( 𝐵  ∈  𝑉  ∧  (  ElDisj  𝐴  ∧  ¬  ∅  ∈  𝐴 ) )  →  ( 𝑢  ∈  𝐴  →  ( 𝐵  ∈  𝑢  →  𝑢  =  [ 𝐵 ]  ∼  𝐴 ) ) ) | 
						
							| 11 | 1 10 | sylan2b | ⊢ ( ( 𝐵  ∈  𝑉  ∧   MembPart  𝐴 )  →  ( 𝑢  ∈  𝐴  →  ( 𝐵  ∈  𝑢  →  𝑢  =  [ 𝐵 ]  ∼  𝐴 ) ) ) | 
						
							| 12 | 11 | impd | ⊢ ( ( 𝐵  ∈  𝑉  ∧   MembPart  𝐴 )  →  ( ( 𝑢  ∈  𝐴  ∧  𝐵  ∈  𝑢 )  →  𝑢  =  [ 𝐵 ]  ∼  𝐴 ) ) | 
						
							| 13 | 12 | ex | ⊢ ( 𝐵  ∈  𝑉  →  (  MembPart  𝐴  →  ( ( 𝑢  ∈  𝐴  ∧  𝐵  ∈  𝑢 )  →  𝑢  =  [ 𝐵 ]  ∼  𝐴 ) ) ) |