| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfmembpart2 |
|- ( MembPart A <-> ( ElDisj A /\ -. (/) e. A ) ) |
| 2 |
|
n0el2 |
|- ( -. (/) e. A <-> dom ( `' _E |` A ) = A ) |
| 3 |
2
|
biimpi |
|- ( -. (/) e. A -> dom ( `' _E |` A ) = A ) |
| 4 |
3
|
ad2antll |
|- ( ( B e. V /\ ( ElDisj A /\ -. (/) e. A ) ) -> dom ( `' _E |` A ) = A ) |
| 5 |
4
|
eleq2d |
|- ( ( B e. V /\ ( ElDisj A /\ -. (/) e. A ) ) -> ( u e. dom ( `' _E |` A ) <-> u e. A ) ) |
| 6 |
|
eldisjlem19 |
|- ( B e. V -> ( ElDisj A -> ( ( u e. dom ( `' _E |` A ) /\ B e. u ) -> u = [ B ] ~ A ) ) ) |
| 7 |
6
|
adantrd |
|- ( B e. V -> ( ( ElDisj A /\ -. (/) e. A ) -> ( ( u e. dom ( `' _E |` A ) /\ B e. u ) -> u = [ B ] ~ A ) ) ) |
| 8 |
7
|
imp |
|- ( ( B e. V /\ ( ElDisj A /\ -. (/) e. A ) ) -> ( ( u e. dom ( `' _E |` A ) /\ B e. u ) -> u = [ B ] ~ A ) ) |
| 9 |
8
|
expd |
|- ( ( B e. V /\ ( ElDisj A /\ -. (/) e. A ) ) -> ( u e. dom ( `' _E |` A ) -> ( B e. u -> u = [ B ] ~ A ) ) ) |
| 10 |
5 9
|
sylbird |
|- ( ( B e. V /\ ( ElDisj A /\ -. (/) e. A ) ) -> ( u e. A -> ( B e. u -> u = [ B ] ~ A ) ) ) |
| 11 |
1 10
|
sylan2b |
|- ( ( B e. V /\ MembPart A ) -> ( u e. A -> ( B e. u -> u = [ B ] ~ A ) ) ) |
| 12 |
11
|
impd |
|- ( ( B e. V /\ MembPart A ) -> ( ( u e. A /\ B e. u ) -> u = [ B ] ~ A ) ) |
| 13 |
12
|
ex |
|- ( B e. V -> ( MembPart A -> ( ( u e. A /\ B e. u ) -> u = [ B ] ~ A ) ) ) |