Metamath Proof Explorer


Theorem mgpsumn

Description: If the group sum for the multiplicative group of a unital ring contains a summand/factor that is the one of the ring, this summand/ factor can be removed from the group sum. (Contributed by AV, 29-Dec-2018)

Ref Expression
Hypotheses mgpsumunsn.m 𝑀 = ( mulGrp ‘ 𝑅 )
mgpsumunsn.t · = ( .r𝑅 )
mgpsumunsn.r ( 𝜑𝑅 ∈ CRing )
mgpsumunsn.n ( 𝜑𝑁 ∈ Fin )
mgpsumunsn.i ( 𝜑𝐼𝑁 )
mgpsumunsn.a ( ( 𝜑𝑘𝑁 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) )
mgpsumn.n 1 = ( 1r𝑅 )
mgpsumn.1 ( 𝑘 = 𝐼𝐴 = 1 )
Assertion mgpsumn ( 𝜑 → ( 𝑀 Σg ( 𝑘𝑁𝐴 ) ) = ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ↦ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 mgpsumunsn.m 𝑀 = ( mulGrp ‘ 𝑅 )
2 mgpsumunsn.t · = ( .r𝑅 )
3 mgpsumunsn.r ( 𝜑𝑅 ∈ CRing )
4 mgpsumunsn.n ( 𝜑𝑁 ∈ Fin )
5 mgpsumunsn.i ( 𝜑𝐼𝑁 )
6 mgpsumunsn.a ( ( 𝜑𝑘𝑁 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) )
7 mgpsumn.n 1 = ( 1r𝑅 )
8 mgpsumn.1 ( 𝑘 = 𝐼𝐴 = 1 )
9 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
10 3 9 syl ( 𝜑𝑅 ∈ Ring )
11 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
12 11 7 ringidcl ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) )
13 10 12 syl ( 𝜑1 ∈ ( Base ‘ 𝑅 ) )
14 1 2 3 4 5 6 13 8 mgpsumunsn ( 𝜑 → ( 𝑀 Σg ( 𝑘𝑁𝐴 ) ) = ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ↦ 𝐴 ) ) · 1 ) )
15 1 11 mgpbas ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 )
16 1 crngmgp ( 𝑅 ∈ CRing → 𝑀 ∈ CMnd )
17 3 16 syl ( 𝜑𝑀 ∈ CMnd )
18 diffi ( 𝑁 ∈ Fin → ( 𝑁 ∖ { 𝐼 } ) ∈ Fin )
19 4 18 syl ( 𝜑 → ( 𝑁 ∖ { 𝐼 } ) ∈ Fin )
20 eldifi ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) → 𝑘𝑁 )
21 20 6 sylan2 ( ( 𝜑𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ) → 𝐴 ∈ ( Base ‘ 𝑅 ) )
22 21 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) 𝐴 ∈ ( Base ‘ 𝑅 ) )
23 15 17 19 22 gsummptcl ( 𝜑 → ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ↦ 𝐴 ) ) ∈ ( Base ‘ 𝑅 ) )
24 11 2 7 ringridm ( ( 𝑅 ∈ Ring ∧ ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ↦ 𝐴 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ↦ 𝐴 ) ) · 1 ) = ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ↦ 𝐴 ) ) )
25 10 23 24 syl2anc ( 𝜑 → ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ↦ 𝐴 ) ) · 1 ) = ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ↦ 𝐴 ) ) )
26 14 25 eqtrd ( 𝜑 → ( 𝑀 Σg ( 𝑘𝑁𝐴 ) ) = ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ↦ 𝐴 ) ) )