| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modm1nep1.i |
⊢ 𝐼 = ( 0 ..^ 𝑁 ) |
| 2 |
|
eluz5nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) → 𝑁 ∈ ℕ ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → 𝑁 ∈ ℕ ) |
| 4 |
|
simpr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → 𝑌 ∈ 𝐼 ) |
| 5 |
|
1zzd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → 1 ∈ ℤ ) |
| 6 |
5
|
znegcld |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → - 1 ∈ ℤ ) |
| 7 |
|
2z |
⊢ 2 ∈ ℤ |
| 8 |
7
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → 2 ∈ ℤ ) |
| 9 |
8
|
znegcld |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → - 2 ∈ ℤ ) |
| 10 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 11 |
|
2cn |
⊢ 2 ∈ ℂ |
| 12 |
|
neg2sub |
⊢ ( ( 1 ∈ ℂ ∧ 2 ∈ ℂ ) → ( - 1 − - 2 ) = ( 2 − 1 ) ) |
| 13 |
10 11 12
|
mp2an |
⊢ ( - 1 − - 2 ) = ( 2 − 1 ) |
| 14 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 15 |
13 14
|
eqtri |
⊢ ( - 1 − - 2 ) = 1 |
| 16 |
15
|
fveq2i |
⊢ ( abs ‘ ( - 1 − - 2 ) ) = ( abs ‘ 1 ) |
| 17 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
| 18 |
16 17
|
eqtri |
⊢ ( abs ‘ ( - 1 − - 2 ) ) = 1 |
| 19 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ↔ ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) ) |
| 20 |
|
1red |
⊢ ( ( 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 1 ∈ ℝ ) |
| 21 |
|
5re |
⊢ 5 ∈ ℝ |
| 22 |
21
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 5 ∈ ℝ ) |
| 23 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 𝑁 ∈ ℝ ) |
| 25 |
|
1lt5 |
⊢ 1 < 5 |
| 26 |
25
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 1 < 5 ) |
| 27 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 5 ≤ 𝑁 ) |
| 28 |
20 22 24 26 27
|
ltletrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 1 < 𝑁 ) |
| 29 |
28
|
3adant1 |
⊢ ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 1 < 𝑁 ) |
| 30 |
19 29
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) → 1 < 𝑁 ) |
| 31 |
|
1elfzo1 |
⊢ ( 1 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
| 32 |
2 30 31
|
sylanbrc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) → 1 ∈ ( 1 ..^ 𝑁 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → 1 ∈ ( 1 ..^ 𝑁 ) ) |
| 34 |
18 33
|
eqeltrid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → ( abs ‘ ( - 1 − - 2 ) ) ∈ ( 1 ..^ 𝑁 ) ) |
| 35 |
1
|
mod2addne |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑌 ∈ 𝐼 ∧ - 1 ∈ ℤ ∧ - 2 ∈ ℤ ) ∧ ( abs ‘ ( - 1 − - 2 ) ) ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝑌 + - 1 ) mod 𝑁 ) ≠ ( ( 𝑌 + - 2 ) mod 𝑁 ) ) |
| 36 |
3 4 6 9 34 35
|
syl131anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → ( ( 𝑌 + - 1 ) mod 𝑁 ) ≠ ( ( 𝑌 + - 2 ) mod 𝑁 ) ) |
| 37 |
|
elfzoelz |
⊢ ( 𝑌 ∈ ( 0 ..^ 𝑁 ) → 𝑌 ∈ ℤ ) |
| 38 |
37 1
|
eleq2s |
⊢ ( 𝑌 ∈ 𝐼 → 𝑌 ∈ ℤ ) |
| 39 |
38
|
zcnd |
⊢ ( 𝑌 ∈ 𝐼 → 𝑌 ∈ ℂ ) |
| 40 |
|
1cnd |
⊢ ( 𝑌 ∈ 𝐼 → 1 ∈ ℂ ) |
| 41 |
39 40
|
negsubd |
⊢ ( 𝑌 ∈ 𝐼 → ( 𝑌 + - 1 ) = ( 𝑌 − 1 ) ) |
| 42 |
41
|
eqcomd |
⊢ ( 𝑌 ∈ 𝐼 → ( 𝑌 − 1 ) = ( 𝑌 + - 1 ) ) |
| 43 |
42
|
oveq1d |
⊢ ( 𝑌 ∈ 𝐼 → ( ( 𝑌 − 1 ) mod 𝑁 ) = ( ( 𝑌 + - 1 ) mod 𝑁 ) ) |
| 44 |
|
2cnd |
⊢ ( 𝑌 ∈ 𝐼 → 2 ∈ ℂ ) |
| 45 |
39 44
|
negsubd |
⊢ ( 𝑌 ∈ 𝐼 → ( 𝑌 + - 2 ) = ( 𝑌 − 2 ) ) |
| 46 |
45
|
eqcomd |
⊢ ( 𝑌 ∈ 𝐼 → ( 𝑌 − 2 ) = ( 𝑌 + - 2 ) ) |
| 47 |
46
|
oveq1d |
⊢ ( 𝑌 ∈ 𝐼 → ( ( 𝑌 − 2 ) mod 𝑁 ) = ( ( 𝑌 + - 2 ) mod 𝑁 ) ) |
| 48 |
43 47
|
neeq12d |
⊢ ( 𝑌 ∈ 𝐼 → ( ( ( 𝑌 − 1 ) mod 𝑁 ) ≠ ( ( 𝑌 − 2 ) mod 𝑁 ) ↔ ( ( 𝑌 + - 1 ) mod 𝑁 ) ≠ ( ( 𝑌 + - 2 ) mod 𝑁 ) ) ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → ( ( ( 𝑌 − 1 ) mod 𝑁 ) ≠ ( ( 𝑌 − 2 ) mod 𝑁 ) ↔ ( ( 𝑌 + - 1 ) mod 𝑁 ) ≠ ( ( 𝑌 + - 2 ) mod 𝑁 ) ) ) |
| 50 |
36 49
|
mpbird |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → ( ( 𝑌 − 1 ) mod 𝑁 ) ≠ ( ( 𝑌 − 2 ) mod 𝑁 ) ) |