Metamath Proof Explorer


Theorem modm1p1ne

Description: If an integer minus one equals another integer plus one modulo an integer greater than 4, then the first integer plus one is not equal to the second integer minus one modulo the same modulus. (Contributed by AV, 15-Nov-2025)

Ref Expression
Hypothesis modm1nep1.i 𝐼 = ( 0 ..^ 𝑁 )
Assertion modm1p1ne ( ( 𝑁 ∈ ( ℤ ‘ 5 ) ∧ 𝑋𝐼𝑌𝐼 ) → ( ( ( 𝑌 − 1 ) mod 𝑁 ) = ( ( 𝑋 + 1 ) mod 𝑁 ) → ( ( 𝑌 + 1 ) mod 𝑁 ) ≠ ( ( 𝑋 − 1 ) mod 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 modm1nep1.i 𝐼 = ( 0 ..^ 𝑁 )
2 eluz2 ( 𝑁 ∈ ( ℤ ‘ 5 ) ↔ ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) )
3 4nn0 4 ∈ ℕ0
4 3 a1i ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 4 ∈ ℕ0 )
5 simp2 ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 𝑁 ∈ ℤ )
6 0red ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 0 ∈ ℝ )
7 5re 5 ∈ ℝ
8 7 a1i ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 5 ∈ ℝ )
9 zre ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ )
10 9 3ad2ant2 ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 𝑁 ∈ ℝ )
11 5pos 0 < 5
12 11 a1i ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 0 < 5 )
13 simp3 ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 5 ≤ 𝑁 )
14 6 8 10 12 13 ltletrd ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 0 < 𝑁 )
15 elnnz ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) )
16 5 14 15 sylanbrc ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 𝑁 ∈ ℕ )
17 4re 4 ∈ ℝ
18 17 a1i ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 4 ∈ ℝ )
19 4lt5 4 < 5
20 19 a1i ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 4 < 5 )
21 18 8 10 20 13 ltletrd ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 4 < 𝑁 )
22 elfzo0 ( 4 ∈ ( 0 ..^ 𝑁 ) ↔ ( 4 ∈ ℕ0𝑁 ∈ ℕ ∧ 4 < 𝑁 ) )
23 4 16 21 22 syl3anbrc ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 4 ∈ ( 0 ..^ 𝑁 ) )
24 2 23 sylbi ( 𝑁 ∈ ( ℤ ‘ 5 ) → 4 ∈ ( 0 ..^ 𝑁 ) )
25 zmodidfzoimp ( 4 ∈ ( 0 ..^ 𝑁 ) → ( 4 mod 𝑁 ) = 4 )
26 24 25 syl ( 𝑁 ∈ ( ℤ ‘ 5 ) → ( 4 mod 𝑁 ) = 4 )
27 4ne0 4 ≠ 0
28 27 a1i ( 𝑁 ∈ ( ℤ ‘ 5 ) → 4 ≠ 0 )
29 26 28 eqnetrd ( 𝑁 ∈ ( ℤ ‘ 5 ) → ( 4 mod 𝑁 ) ≠ 0 )
30 df-ne ( ( ( 4 · 1 ) mod 𝑁 ) ≠ 0 ↔ ¬ ( ( 4 · 1 ) mod 𝑁 ) = 0 )
31 4cn 4 ∈ ℂ
32 31 mulridi ( 4 · 1 ) = 4
33 32 oveq1i ( ( 4 · 1 ) mod 𝑁 ) = ( 4 mod 𝑁 )
34 33 neeq1i ( ( ( 4 · 1 ) mod 𝑁 ) ≠ 0 ↔ ( 4 mod 𝑁 ) ≠ 0 )
35 30 34 bitr3i ( ¬ ( ( 4 · 1 ) mod 𝑁 ) = 0 ↔ ( 4 mod 𝑁 ) ≠ 0 )
36 29 35 sylibr ( 𝑁 ∈ ( ℤ ‘ 5 ) → ¬ ( ( 4 · 1 ) mod 𝑁 ) = 0 )
37 36 3ad2ant1 ( ( 𝑁 ∈ ( ℤ ‘ 5 ) ∧ 𝑋𝐼𝑌𝐼 ) → ¬ ( ( 4 · 1 ) mod 𝑁 ) = 0 )
38 37 adantr ( ( ( 𝑁 ∈ ( ℤ ‘ 5 ) ∧ 𝑋𝐼𝑌𝐼 ) ∧ ( ( 𝑌 − 1 ) mod 𝑁 ) = ( ( 𝑋 + 1 ) mod 𝑁 ) ) → ¬ ( ( 4 · 1 ) mod 𝑁 ) = 0 )
39 uzuzle35 ( 𝑁 ∈ ( ℤ ‘ 5 ) → 𝑁 ∈ ( ℤ ‘ 3 ) )
40 eluz3nn ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℕ )
41 39 40 syl ( 𝑁 ∈ ( ℤ ‘ 5 ) → 𝑁 ∈ ℕ )
42 41 3ad2ant1 ( ( 𝑁 ∈ ( ℤ ‘ 5 ) ∧ 𝑋𝐼𝑌𝐼 ) → 𝑁 ∈ ℕ )
43 elfzoelz ( 𝑋 ∈ ( 0 ..^ 𝑁 ) → 𝑋 ∈ ℤ )
44 43 1 eleq2s ( 𝑋𝐼𝑋 ∈ ℤ )
45 44 3ad2ant2 ( ( 𝑁 ∈ ( ℤ ‘ 5 ) ∧ 𝑋𝐼𝑌𝐼 ) → 𝑋 ∈ ℤ )
46 elfzoelz ( 𝑌 ∈ ( 0 ..^ 𝑁 ) → 𝑌 ∈ ℤ )
47 46 1 eleq2s ( 𝑌𝐼𝑌 ∈ ℤ )
48 47 3ad2ant3 ( ( 𝑁 ∈ ( ℤ ‘ 5 ) ∧ 𝑋𝐼𝑌𝐼 ) → 𝑌 ∈ ℤ )
49 1zzd ( ( 𝑁 ∈ ( ℤ ‘ 5 ) ∧ 𝑋𝐼𝑌𝐼 ) → 1 ∈ ℤ )
50 modmkpkne ( ( 𝑁 ∈ ℕ ∧ ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( ( ( 𝑌 − 1 ) mod 𝑁 ) = ( ( 𝑋 + 1 ) mod 𝑁 ) → ( ( ( 𝑌 + 1 ) mod 𝑁 ) = ( ( 𝑋 − 1 ) mod 𝑁 ) ↔ ( ( 4 · 1 ) mod 𝑁 ) = 0 ) ) )
51 42 45 48 49 50 syl13anc ( ( 𝑁 ∈ ( ℤ ‘ 5 ) ∧ 𝑋𝐼𝑌𝐼 ) → ( ( ( 𝑌 − 1 ) mod 𝑁 ) = ( ( 𝑋 + 1 ) mod 𝑁 ) → ( ( ( 𝑌 + 1 ) mod 𝑁 ) = ( ( 𝑋 − 1 ) mod 𝑁 ) ↔ ( ( 4 · 1 ) mod 𝑁 ) = 0 ) ) )
52 51 imp ( ( ( 𝑁 ∈ ( ℤ ‘ 5 ) ∧ 𝑋𝐼𝑌𝐼 ) ∧ ( ( 𝑌 − 1 ) mod 𝑁 ) = ( ( 𝑋 + 1 ) mod 𝑁 ) ) → ( ( ( 𝑌 + 1 ) mod 𝑁 ) = ( ( 𝑋 − 1 ) mod 𝑁 ) ↔ ( ( 4 · 1 ) mod 𝑁 ) = 0 ) )
53 38 52 mtbird ( ( ( 𝑁 ∈ ( ℤ ‘ 5 ) ∧ 𝑋𝐼𝑌𝐼 ) ∧ ( ( 𝑌 − 1 ) mod 𝑁 ) = ( ( 𝑋 + 1 ) mod 𝑁 ) ) → ¬ ( ( 𝑌 + 1 ) mod 𝑁 ) = ( ( 𝑋 − 1 ) mod 𝑁 ) )
54 53 neqned ( ( ( 𝑁 ∈ ( ℤ ‘ 5 ) ∧ 𝑋𝐼𝑌𝐼 ) ∧ ( ( 𝑌 − 1 ) mod 𝑁 ) = ( ( 𝑋 + 1 ) mod 𝑁 ) ) → ( ( 𝑌 + 1 ) mod 𝑁 ) ≠ ( ( 𝑋 − 1 ) mod 𝑁 ) )
55 54 ex ( ( 𝑁 ∈ ( ℤ ‘ 5 ) ∧ 𝑋𝐼𝑌𝐼 ) → ( ( ( 𝑌 − 1 ) mod 𝑁 ) = ( ( 𝑋 + 1 ) mod 𝑁 ) → ( ( 𝑌 + 1 ) mod 𝑁 ) ≠ ( ( 𝑋 − 1 ) mod 𝑁 ) ) )