| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrisval.1 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
| 2 |
|
mrisval.2 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
| 3 |
|
fvssunirn |
⊢ ( Moore ‘ 𝑋 ) ⊆ ∪ ran Moore |
| 4 |
3
|
sseli |
⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝐴 ∈ ∪ ran Moore ) |
| 5 |
|
unieq |
⊢ ( 𝑐 = 𝐴 → ∪ 𝑐 = ∪ 𝐴 ) |
| 6 |
5
|
pweqd |
⊢ ( 𝑐 = 𝐴 → 𝒫 ∪ 𝑐 = 𝒫 ∪ 𝐴 ) |
| 7 |
|
fveq2 |
⊢ ( 𝑐 = 𝐴 → ( mrCls ‘ 𝑐 ) = ( mrCls ‘ 𝐴 ) ) |
| 8 |
7 1
|
eqtr4di |
⊢ ( 𝑐 = 𝐴 → ( mrCls ‘ 𝑐 ) = 𝑁 ) |
| 9 |
8
|
fveq1d |
⊢ ( 𝑐 = 𝐴 → ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ) |
| 10 |
9
|
eleq2d |
⊢ ( 𝑐 = 𝐴 → ( 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) ↔ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ) ) |
| 11 |
10
|
notbid |
⊢ ( 𝑐 = 𝐴 → ( ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) ↔ ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ) ) |
| 12 |
11
|
ralbidv |
⊢ ( 𝑐 = 𝐴 → ( ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) ↔ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ) ) |
| 13 |
6 12
|
rabeqbidv |
⊢ ( 𝑐 = 𝐴 → { 𝑠 ∈ 𝒫 ∪ 𝑐 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) } = { 𝑠 ∈ 𝒫 ∪ 𝐴 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
| 14 |
|
df-mri |
⊢ mrInd = ( 𝑐 ∈ ∪ ran Moore ↦ { 𝑠 ∈ 𝒫 ∪ 𝑐 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
| 15 |
|
vuniex |
⊢ ∪ 𝑐 ∈ V |
| 16 |
15
|
pwex |
⊢ 𝒫 ∪ 𝑐 ∈ V |
| 17 |
16
|
rabex |
⊢ { 𝑠 ∈ 𝒫 ∪ 𝑐 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ∈ V |
| 18 |
13 14 17
|
fvmpt3i |
⊢ ( 𝐴 ∈ ∪ ran Moore → ( mrInd ‘ 𝐴 ) = { 𝑠 ∈ 𝒫 ∪ 𝐴 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
| 19 |
4 18
|
syl |
⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( mrInd ‘ 𝐴 ) = { 𝑠 ∈ 𝒫 ∪ 𝐴 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
| 20 |
2 19
|
eqtrid |
⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝐼 = { 𝑠 ∈ 𝒫 ∪ 𝐴 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
| 21 |
|
mreuni |
⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ∪ 𝐴 = 𝑋 ) |
| 22 |
21
|
pweqd |
⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝒫 ∪ 𝐴 = 𝒫 𝑋 ) |
| 23 |
22
|
rabeqdv |
⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → { 𝑠 ∈ 𝒫 ∪ 𝐴 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } = { 𝑠 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
| 24 |
20 23
|
eqtrd |
⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝐼 = { 𝑠 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |