Step |
Hyp |
Ref |
Expression |
1 |
|
mulcncff.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 –cn→ ℂ ) ) |
2 |
|
mulcncff.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 –cn→ ℂ ) ) |
3 |
|
cncfrss |
⊢ ( 𝐹 ∈ ( 𝑋 –cn→ ℂ ) → 𝑋 ⊆ ℂ ) |
4 |
|
cnex |
⊢ ℂ ∈ V |
5 |
4
|
ssex |
⊢ ( 𝑋 ⊆ ℂ → 𝑋 ∈ V ) |
6 |
1 3 5
|
3syl |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
7 |
|
cncff |
⊢ ( 𝐹 ∈ ( 𝑋 –cn→ ℂ ) → 𝐹 : 𝑋 ⟶ ℂ ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
9 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
10 |
|
cncff |
⊢ ( 𝐺 ∈ ( 𝑋 –cn→ ℂ ) → 𝐺 : 𝑋 ⟶ ℂ ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) |
12 |
11
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
13 |
8
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
14 |
11
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
15 |
6 9 12 13 14
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
16 |
13 1
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
17 |
14 2
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
18 |
16 17
|
mulcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
19 |
15 18
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) ) |