| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulcxp.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
mulcxp.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 3 |
|
oveq2 |
⊢ ( 𝐶 = 0 → ( 0 ↑𝑐 𝐶 ) = ( 0 ↑𝑐 0 ) ) |
| 4 |
|
0cn |
⊢ 0 ∈ ℂ |
| 5 |
|
cxp0 |
⊢ ( 0 ∈ ℂ → ( 0 ↑𝑐 0 ) = 1 ) |
| 6 |
4 5
|
ax-mp |
⊢ ( 0 ↑𝑐 0 ) = 1 |
| 7 |
3 6
|
eqtrdi |
⊢ ( 𝐶 = 0 → ( 0 ↑𝑐 𝐶 ) = 1 ) |
| 8 |
|
oveq2 |
⊢ ( 𝐶 = 0 → ( 𝐴 ↑𝑐 𝐶 ) = ( 𝐴 ↑𝑐 0 ) ) |
| 9 |
8 7
|
oveq12d |
⊢ ( 𝐶 = 0 → ( ( 𝐴 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) = ( ( 𝐴 ↑𝑐 0 ) · 1 ) ) |
| 10 |
7 9
|
eqeq12d |
⊢ ( 𝐶 = 0 → ( ( 0 ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) ↔ 1 = ( ( 𝐴 ↑𝑐 0 ) · 1 ) ) ) |
| 11 |
|
cxpcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) |
| 12 |
1 2 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) |
| 14 |
13
|
mul01d |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 0 ) → ( ( 𝐴 ↑𝑐 𝐶 ) · 0 ) = 0 ) |
| 15 |
|
0cxp |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 0 ↑𝑐 𝐶 ) = 0 ) |
| 16 |
2 15
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 0 ) → ( 0 ↑𝑐 𝐶 ) = 0 ) |
| 17 |
16
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 0 ) → ( ( 𝐴 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐶 ) · 0 ) ) |
| 18 |
14 17 16
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 0 ) → ( 0 ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) ) |
| 19 |
|
cxp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 0 ) = 1 ) |
| 20 |
1 19
|
syl |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 0 ) = 1 ) |
| 21 |
20
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑𝑐 0 ) · 1 ) = ( 1 · 1 ) ) |
| 22 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
| 23 |
21 22
|
eqtr2di |
⊢ ( 𝜑 → 1 = ( ( 𝐴 ↑𝑐 0 ) · 1 ) ) |
| 24 |
10 18 23
|
pm2.61ne |
⊢ ( 𝜑 → ( 0 ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) ) |