Metamath Proof Explorer


Theorem mulcxplem

Description: Lemma for mulcxp . (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Hypotheses mulcxp.1 φA
mulcxp.2 φC
Assertion mulcxplem φ0C=AC0C

Proof

Step Hyp Ref Expression
1 mulcxp.1 φA
2 mulcxp.2 φC
3 oveq2 C=00C=00
4 0cn 0
5 cxp0 000=1
6 4 5 ax-mp 00=1
7 3 6 eqtrdi C=00C=1
8 oveq2 C=0AC=A0
9 8 7 oveq12d C=0AC0C=A01
10 7 9 eqeq12d C=00C=AC0C1=A01
11 cxpcl ACAC
12 1 2 11 syl2anc φAC
13 12 adantr φC0AC
14 13 mul01d φC0AC0=0
15 0cxp CC00C=0
16 2 15 sylan φC00C=0
17 16 oveq2d φC0AC0C=AC0
18 14 17 16 3eqtr4rd φC00C=AC0C
19 cxp0 AA0=1
20 1 19 syl φA0=1
21 20 oveq1d φA01=11
22 1t1e1 11=1
23 21 22 eqtr2di φ1=A01
24 10 18 23 pm2.61ne φ0C=AC0C