Step |
Hyp |
Ref |
Expression |
1 |
|
nbgr2vtx1edg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
nbgr2vtx1edg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
nbgrel |
⊢ ( 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 ) ) |
4 |
2
|
eleq2i |
⊢ ( 𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
5 |
|
edguhgr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) |
6 |
4 5
|
sylan2b |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) |
7 |
1
|
eqeq1i |
⊢ ( 𝑉 = { 𝑎 , 𝑏 } ↔ ( Vtx ‘ 𝐺 ) = { 𝑎 , 𝑏 } ) |
8 |
|
pweq |
⊢ ( ( Vtx ‘ 𝐺 ) = { 𝑎 , 𝑏 } → 𝒫 ( Vtx ‘ 𝐺 ) = 𝒫 { 𝑎 , 𝑏 } ) |
9 |
8
|
eleq2d |
⊢ ( ( Vtx ‘ 𝐺 ) = { 𝑎 , 𝑏 } → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ 𝑒 ∈ 𝒫 { 𝑎 , 𝑏 } ) ) |
10 |
|
velpw |
⊢ ( 𝑒 ∈ 𝒫 { 𝑎 , 𝑏 } ↔ 𝑒 ⊆ { 𝑎 , 𝑏 } ) |
11 |
9 10
|
bitrdi |
⊢ ( ( Vtx ‘ 𝐺 ) = { 𝑎 , 𝑏 } → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ 𝑒 ⊆ { 𝑎 , 𝑏 } ) ) |
12 |
7 11
|
sylbi |
⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ 𝑒 ⊆ { 𝑎 , 𝑏 } ) ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ 𝑒 ⊆ { 𝑎 , 𝑏 } ) ) |
14 |
|
prcom |
⊢ { 𝑏 , 𝑎 } = { 𝑎 , 𝑏 } |
15 |
14
|
sseq1i |
⊢ ( { 𝑏 , 𝑎 } ⊆ 𝑒 ↔ { 𝑎 , 𝑏 } ⊆ 𝑒 ) |
16 |
|
eqss |
⊢ ( { 𝑎 , 𝑏 } = 𝑒 ↔ ( { 𝑎 , 𝑏 } ⊆ 𝑒 ∧ 𝑒 ⊆ { 𝑎 , 𝑏 } ) ) |
17 |
|
eleq1a |
⊢ ( 𝑒 ∈ 𝐸 → ( { 𝑎 , 𝑏 } = 𝑒 → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
18 |
17
|
a1i |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → ( 𝑒 ∈ 𝐸 → ( { 𝑎 , 𝑏 } = 𝑒 → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) |
19 |
18
|
com13 |
⊢ ( { 𝑎 , 𝑏 } = 𝑒 → ( 𝑒 ∈ 𝐸 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) |
20 |
16 19
|
sylbir |
⊢ ( ( { 𝑎 , 𝑏 } ⊆ 𝑒 ∧ 𝑒 ⊆ { 𝑎 , 𝑏 } ) → ( 𝑒 ∈ 𝐸 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) |
21 |
20
|
ex |
⊢ ( { 𝑎 , 𝑏 } ⊆ 𝑒 → ( 𝑒 ⊆ { 𝑎 , 𝑏 } → ( 𝑒 ∈ 𝐸 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) |
22 |
15 21
|
sylbi |
⊢ ( { 𝑏 , 𝑎 } ⊆ 𝑒 → ( 𝑒 ⊆ { 𝑎 , 𝑏 } → ( 𝑒 ∈ 𝐸 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) |
23 |
22
|
com13 |
⊢ ( 𝑒 ∈ 𝐸 → ( 𝑒 ⊆ { 𝑎 , 𝑏 } → ( { 𝑏 , 𝑎 } ⊆ 𝑒 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) |
24 |
23
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑒 ⊆ { 𝑎 , 𝑏 } → ( { 𝑏 , 𝑎 } ⊆ 𝑒 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) |
25 |
13 24
|
sylbid |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → ( { 𝑏 , 𝑎 } ⊆ 𝑒 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) |
26 |
25
|
ex |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸 ) → ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → ( { 𝑏 , 𝑎 } ⊆ 𝑒 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) ) |
27 |
6 26
|
mpid |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸 ) → ( 𝑉 = { 𝑎 , 𝑏 } → ( { 𝑏 , 𝑎 } ⊆ 𝑒 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) |
28 |
27
|
impancom |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑒 ∈ 𝐸 → ( { 𝑏 , 𝑎 } ⊆ 𝑒 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) |
29 |
28
|
com14 |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → ( 𝑒 ∈ 𝐸 → ( { 𝑏 , 𝑎 } ⊆ 𝑒 → ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = { 𝑎 , 𝑏 } ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) |
30 |
29
|
rexlimdv |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → ( ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 → ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = { 𝑎 , 𝑏 } ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) |
31 |
30
|
3impia |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = { 𝑎 , 𝑏 } ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
32 |
31
|
com12 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
33 |
3 32
|
syl5bi |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
34 |
33
|
3impia |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = { 𝑎 , 𝑏 } ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) |