| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nbgr2vtx1edg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
nbgr2vtx1edg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 4 |
|
hash2prb |
⊢ ( 𝑉 ∈ V → ( ( ♯ ‘ 𝑉 ) = 2 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ( ( ♯ ‘ 𝑉 ) = 2 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) |
| 6 |
|
simpll |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) |
| 7 |
6
|
ancomd |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ( 𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉 ) ) |
| 8 |
|
simpl |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑎 ≠ 𝑏 ) |
| 9 |
8
|
necomd |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑏 ≠ 𝑎 ) |
| 10 |
9
|
ad2antlr |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → 𝑏 ≠ 𝑎 ) |
| 11 |
|
id |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
| 12 |
|
sseq2 |
⊢ ( 𝑒 = { 𝑎 , 𝑏 } → ( { 𝑎 , 𝑏 } ⊆ 𝑒 ↔ { 𝑎 , 𝑏 } ⊆ { 𝑎 , 𝑏 } ) ) |
| 13 |
12
|
adantl |
⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( { 𝑎 , 𝑏 } ⊆ 𝑒 ↔ { 𝑎 , 𝑏 } ⊆ { 𝑎 , 𝑏 } ) ) |
| 14 |
|
ssidd |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 → { 𝑎 , 𝑏 } ⊆ { 𝑎 , 𝑏 } ) |
| 15 |
11 13 14
|
rspcedvd |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ∃ 𝑒 ∈ 𝐸 { 𝑎 , 𝑏 } ⊆ 𝑒 ) |
| 16 |
15
|
adantl |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ∃ 𝑒 ∈ 𝐸 { 𝑎 , 𝑏 } ⊆ 𝑒 ) |
| 17 |
1 2
|
nbgrel |
⊢ ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ ( ( 𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ≠ 𝑎 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑎 , 𝑏 } ⊆ 𝑒 ) ) |
| 18 |
7 10 16 17
|
syl3anbrc |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
| 19 |
8
|
ad2antlr |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → 𝑎 ≠ 𝑏 ) |
| 20 |
|
sseq2 |
⊢ ( 𝑒 = { 𝑎 , 𝑏 } → ( { 𝑏 , 𝑎 } ⊆ 𝑒 ↔ { 𝑏 , 𝑎 } ⊆ { 𝑎 , 𝑏 } ) ) |
| 21 |
20
|
adantl |
⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( { 𝑏 , 𝑎 } ⊆ 𝑒 ↔ { 𝑏 , 𝑎 } ⊆ { 𝑎 , 𝑏 } ) ) |
| 22 |
|
prcom |
⊢ { 𝑏 , 𝑎 } = { 𝑎 , 𝑏 } |
| 23 |
22
|
eqimssi |
⊢ { 𝑏 , 𝑎 } ⊆ { 𝑎 , 𝑏 } |
| 24 |
23
|
a1i |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 → { 𝑏 , 𝑎 } ⊆ { 𝑎 , 𝑏 } ) |
| 25 |
11 21 24
|
rspcedvd |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 ) |
| 26 |
25
|
adantl |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 ) |
| 27 |
1 2
|
nbgrel |
⊢ ( 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 ) ) |
| 28 |
6 19 26 27
|
syl3anbrc |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) |
| 29 |
|
difprsn1 |
⊢ ( 𝑎 ≠ 𝑏 → ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) = { 𝑏 } ) |
| 30 |
29
|
raleqdv |
⊢ ( 𝑎 ≠ 𝑏 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ ∀ 𝑛 ∈ { 𝑏 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 31 |
|
vex |
⊢ 𝑏 ∈ V |
| 32 |
|
eleq1 |
⊢ ( 𝑛 = 𝑏 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 33 |
31 32
|
ralsn |
⊢ ( ∀ 𝑛 ∈ { 𝑏 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
| 34 |
30 33
|
bitrdi |
⊢ ( 𝑎 ≠ 𝑏 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 35 |
|
difprsn2 |
⊢ ( 𝑎 ≠ 𝑏 → ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) = { 𝑎 } ) |
| 36 |
35
|
raleqdv |
⊢ ( 𝑎 ≠ 𝑏 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ ∀ 𝑛 ∈ { 𝑎 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 37 |
|
vex |
⊢ 𝑎 ∈ V |
| 38 |
|
eleq1 |
⊢ ( 𝑛 = 𝑎 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 39 |
37 38
|
ralsn |
⊢ ( ∀ 𝑛 ∈ { 𝑎 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) |
| 40 |
36 39
|
bitrdi |
⊢ ( 𝑎 ≠ 𝑏 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 41 |
34 40
|
anbi12d |
⊢ ( 𝑎 ≠ 𝑏 → ( ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ↔ ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ↔ ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) |
| 43 |
42
|
ad2antlr |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ( ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ↔ ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) |
| 44 |
18 28 43
|
mpbir2and |
⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 45 |
44
|
ex |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) |
| 46 |
|
eleq1 |
⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑉 ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
| 47 |
|
id |
⊢ ( 𝑉 = { 𝑎 , 𝑏 } → 𝑉 = { 𝑎 , 𝑏 } ) |
| 48 |
|
difeq1 |
⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑉 ∖ { 𝑣 } ) = ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) ) |
| 49 |
48
|
raleqdv |
⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
| 50 |
47 49
|
raleqbidv |
⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑣 ∈ { 𝑎 , 𝑏 } ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
| 51 |
|
sneq |
⊢ ( 𝑣 = 𝑎 → { 𝑣 } = { 𝑎 } ) |
| 52 |
51
|
difeq2d |
⊢ ( 𝑣 = 𝑎 → ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) = ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) ) |
| 53 |
|
oveq2 |
⊢ ( 𝑣 = 𝑎 → ( 𝐺 NeighbVtx 𝑣 ) = ( 𝐺 NeighbVtx 𝑎 ) ) |
| 54 |
53
|
eleq2d |
⊢ ( 𝑣 = 𝑎 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 55 |
52 54
|
raleqbidv |
⊢ ( 𝑣 = 𝑎 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 56 |
|
sneq |
⊢ ( 𝑣 = 𝑏 → { 𝑣 } = { 𝑏 } ) |
| 57 |
56
|
difeq2d |
⊢ ( 𝑣 = 𝑏 → ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) = ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) ) |
| 58 |
|
oveq2 |
⊢ ( 𝑣 = 𝑏 → ( 𝐺 NeighbVtx 𝑣 ) = ( 𝐺 NeighbVtx 𝑏 ) ) |
| 59 |
58
|
eleq2d |
⊢ ( 𝑣 = 𝑏 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 60 |
57 59
|
raleqbidv |
⊢ ( 𝑣 = 𝑏 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 61 |
37 31 55 60
|
ralpr |
⊢ ( ∀ 𝑣 ∈ { 𝑎 , 𝑏 } ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 62 |
50 61
|
bitrdi |
⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) |
| 63 |
46 62
|
imbi12d |
⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( ( 𝑉 ∈ 𝐸 → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) ) |
| 64 |
63
|
adantl |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( ( 𝑉 ∈ 𝐸 → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) ) |
| 65 |
64
|
adantl |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) → ( ( 𝑉 ∈ 𝐸 → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) ) |
| 66 |
45 65
|
mpbird |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) → ( 𝑉 ∈ 𝐸 → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
| 67 |
66
|
ex |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑉 ∈ 𝐸 → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) ) |
| 68 |
67
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑉 ∈ 𝐸 → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
| 69 |
5 68
|
sylbi |
⊢ ( ( ♯ ‘ 𝑉 ) = 2 → ( 𝑉 ∈ 𝐸 → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
| 70 |
69
|
imp |
⊢ ( ( ( ♯ ‘ 𝑉 ) = 2 ∧ 𝑉 ∈ 𝐸 ) → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) |