Description: Lemma for nbuhgr2vtx1edgb . This reverse direction of nbgr2vtx1edg only holds for classes whose edges are subsets of the set of vertices, which is the property of hypergraphs. (Contributed by AV, 2-Nov-2020) (Proof shortened by AV, 13-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nbgr2vtx1edg.v | |
|
nbgr2vtx1edg.e | |
||
Assertion | nbuhgr2vtx1edgblem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbgr2vtx1edg.v | |
|
2 | nbgr2vtx1edg.e | |
|
3 | 1 2 | nbgrel | |
4 | 2 | eleq2i | |
5 | edguhgr | |
|
6 | 4 5 | sylan2b | |
7 | 1 | eqeq1i | |
8 | pweq | |
|
9 | 8 | eleq2d | |
10 | velpw | |
|
11 | 9 10 | bitrdi | |
12 | 7 11 | sylbi | |
13 | 12 | adantl | |
14 | prcom | |
|
15 | 14 | sseq1i | |
16 | eqss | |
|
17 | eleq1a | |
|
18 | 17 | a1i | |
19 | 18 | com13 | |
20 | 16 19 | sylbir | |
21 | 20 | ex | |
22 | 15 21 | sylbi | |
23 | 22 | com13 | |
24 | 23 | ad2antlr | |
25 | 13 24 | sylbid | |
26 | 25 | ex | |
27 | 6 26 | mpid | |
28 | 27 | impancom | |
29 | 28 | com14 | |
30 | 29 | rexlimdv | |
31 | 30 | 3impia | |
32 | 31 | com12 | |
33 | 3 32 | biimtrid | |
34 | 33 | 3impia | |