Metamath Proof Explorer


Theorem nbuhgr2vtx1edgblem

Description: Lemma for nbuhgr2vtx1edgb . This reverse direction of nbgr2vtx1edg only holds for classes whose edges are subsets of the set of vertices, which is the property of hypergraphs. (Contributed by AV, 2-Nov-2020) (Proof shortened by AV, 13-Feb-2022)

Ref Expression
Hypotheses nbgr2vtx1edg.v V=VtxG
nbgr2vtx1edg.e E=EdgG
Assertion nbuhgr2vtx1edgblem GUHGraphV=abaGNeighbVtxbabE

Proof

Step Hyp Ref Expression
1 nbgr2vtx1edg.v V=VtxG
2 nbgr2vtx1edg.e E=EdgG
3 1 2 nbgrel aGNeighbVtxbaVbVabeEbae
4 2 eleq2i eEeEdgG
5 edguhgr GUHGrapheEdgGe𝒫VtxG
6 4 5 sylan2b GUHGrapheEe𝒫VtxG
7 1 eqeq1i V=abVtxG=ab
8 pweq VtxG=ab𝒫VtxG=𝒫ab
9 8 eleq2d VtxG=abe𝒫VtxGe𝒫ab
10 velpw e𝒫abeab
11 9 10 bitrdi VtxG=abe𝒫VtxGeab
12 7 11 sylbi V=abe𝒫VtxGeab
13 12 adantl GUHGrapheEV=abe𝒫VtxGeab
14 prcom ba=ab
15 14 sseq1i baeabe
16 eqss ab=eabeeab
17 eleq1a eEab=eabE
18 17 a1i aVbVabeEab=eabE
19 18 com13 ab=eeEaVbVababE
20 16 19 sylbir abeeabeEaVbVababE
21 20 ex abeeabeEaVbVababE
22 15 21 sylbi baeeabeEaVbVababE
23 22 com13 eEeabbaeaVbVababE
24 23 ad2antlr GUHGrapheEV=abeabbaeaVbVababE
25 13 24 sylbid GUHGrapheEV=abe𝒫VtxGbaeaVbVababE
26 25 ex GUHGrapheEV=abe𝒫VtxGbaeaVbVababE
27 6 26 mpid GUHGrapheEV=abbaeaVbVababE
28 27 impancom GUHGraphV=abeEbaeaVbVababE
29 28 com14 aVbVabeEbaeGUHGraphV=ababE
30 29 rexlimdv aVbVabeEbaeGUHGraphV=ababE
31 30 3impia aVbVabeEbaeGUHGraphV=ababE
32 31 com12 GUHGraphV=abaVbVabeEbaeabE
33 3 32 biimtrid GUHGraphV=abaGNeighbVtxbabE
34 33 3impia GUHGraphV=abaGNeighbVtxbabE