| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nbgr2vtx1edg.v |
|
| 2 |
|
nbgr2vtx1edg.e |
|
| 3 |
1 2
|
nbgrel |
|
| 4 |
2
|
eleq2i |
|
| 5 |
|
edguhgr |
|
| 6 |
4 5
|
sylan2b |
|
| 7 |
1
|
eqeq1i |
|
| 8 |
|
pweq |
|
| 9 |
8
|
eleq2d |
|
| 10 |
|
velpw |
|
| 11 |
9 10
|
bitrdi |
|
| 12 |
7 11
|
sylbi |
|
| 13 |
12
|
adantl |
|
| 14 |
|
prcom |
|
| 15 |
14
|
sseq1i |
|
| 16 |
|
eqss |
|
| 17 |
|
eleq1a |
|
| 18 |
17
|
a1i |
|
| 19 |
18
|
com13 |
|
| 20 |
16 19
|
sylbir |
|
| 21 |
20
|
ex |
|
| 22 |
15 21
|
sylbi |
|
| 23 |
22
|
com13 |
|
| 24 |
23
|
ad2antlr |
|
| 25 |
13 24
|
sylbid |
|
| 26 |
25
|
ex |
|
| 27 |
6 26
|
mpid |
|
| 28 |
27
|
impancom |
|
| 29 |
28
|
com14 |
|
| 30 |
29
|
rexlimdv |
|
| 31 |
30
|
3impia |
|
| 32 |
31
|
com12 |
|
| 33 |
3 32
|
biimtrid |
|
| 34 |
33
|
3impia |
|