| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nbgr2vtx1edg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
nbgr2vtx1edg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 4 |
|
hash2prb |
⊢ ( 𝑉 ∈ V → ( ( ♯ ‘ 𝑉 ) = 2 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ( ( ♯ ‘ 𝑉 ) = 2 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) |
| 6 |
|
simpr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) |
| 7 |
6
|
ancomd |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉 ) ) |
| 8 |
7
|
ad2antrr |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ( 𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉 ) ) |
| 9 |
|
id |
⊢ ( 𝑎 ≠ 𝑏 → 𝑎 ≠ 𝑏 ) |
| 10 |
9
|
necomd |
⊢ ( 𝑎 ≠ 𝑏 → 𝑏 ≠ 𝑎 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑏 ≠ 𝑎 ) |
| 12 |
11
|
ad2antlr |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → 𝑏 ≠ 𝑎 ) |
| 13 |
|
prcom |
⊢ { 𝑎 , 𝑏 } = { 𝑏 , 𝑎 } |
| 14 |
13
|
eleq1i |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { 𝑏 , 𝑎 } ∈ 𝐸 ) |
| 15 |
14
|
biimpi |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 → { 𝑏 , 𝑎 } ∈ 𝐸 ) |
| 16 |
|
sseq2 |
⊢ ( 𝑒 = { 𝑏 , 𝑎 } → ( { 𝑎 , 𝑏 } ⊆ 𝑒 ↔ { 𝑎 , 𝑏 } ⊆ { 𝑏 , 𝑎 } ) ) |
| 17 |
16
|
adantl |
⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ 𝑒 = { 𝑏 , 𝑎 } ) → ( { 𝑎 , 𝑏 } ⊆ 𝑒 ↔ { 𝑎 , 𝑏 } ⊆ { 𝑏 , 𝑎 } ) ) |
| 18 |
13
|
eqimssi |
⊢ { 𝑎 , 𝑏 } ⊆ { 𝑏 , 𝑎 } |
| 19 |
18
|
a1i |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 → { 𝑎 , 𝑏 } ⊆ { 𝑏 , 𝑎 } ) |
| 20 |
15 17 19
|
rspcedvd |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ∃ 𝑒 ∈ 𝐸 { 𝑎 , 𝑏 } ⊆ 𝑒 ) |
| 21 |
20
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ∃ 𝑒 ∈ 𝐸 { 𝑎 , 𝑏 } ⊆ 𝑒 ) |
| 22 |
1 2
|
nbgrel |
⊢ ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ ( ( 𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ≠ 𝑎 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑎 , 𝑏 } ⊆ 𝑒 ) ) |
| 23 |
8 12 21 22
|
syl3anbrc |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
| 24 |
6
|
ad2antrr |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) |
| 25 |
|
simplrl |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → 𝑎 ≠ 𝑏 ) |
| 26 |
|
id |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
| 27 |
|
sseq2 |
⊢ ( 𝑒 = { 𝑎 , 𝑏 } → ( { 𝑏 , 𝑎 } ⊆ 𝑒 ↔ { 𝑏 , 𝑎 } ⊆ { 𝑎 , 𝑏 } ) ) |
| 28 |
27
|
adantl |
⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( { 𝑏 , 𝑎 } ⊆ 𝑒 ↔ { 𝑏 , 𝑎 } ⊆ { 𝑎 , 𝑏 } ) ) |
| 29 |
|
prcom |
⊢ { 𝑏 , 𝑎 } = { 𝑎 , 𝑏 } |
| 30 |
29
|
eqimssi |
⊢ { 𝑏 , 𝑎 } ⊆ { 𝑎 , 𝑏 } |
| 31 |
30
|
a1i |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 → { 𝑏 , 𝑎 } ⊆ { 𝑎 , 𝑏 } ) |
| 32 |
26 28 31
|
rspcedvd |
⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 ) |
| 33 |
32
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 ) |
| 34 |
1 2
|
nbgrel |
⊢ ( 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 ) ) |
| 35 |
24 25 33 34
|
syl3anbrc |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) |
| 36 |
23 35
|
jca |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 37 |
36
|
ex |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) |
| 38 |
1 2
|
nbuhgr2vtx1edgblem |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = { 𝑎 , 𝑏 } ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
| 39 |
38
|
3exp |
⊢ ( 𝐺 ∈ UHGraph → ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) |
| 41 |
40
|
adantld |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) |
| 42 |
41
|
imp |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) → ( 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
| 43 |
42
|
adantld |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) → ( ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
| 44 |
37 43
|
impbid |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) |
| 45 |
|
eleq1 |
⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑉 ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑉 ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
| 47 |
|
id |
⊢ ( 𝑉 = { 𝑎 , 𝑏 } → 𝑉 = { 𝑎 , 𝑏 } ) |
| 48 |
|
difeq1 |
⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑉 ∖ { 𝑣 } ) = ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) ) |
| 49 |
48
|
raleqdv |
⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
| 50 |
47 49
|
raleqbidv |
⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑣 ∈ { 𝑎 , 𝑏 } ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
| 51 |
|
vex |
⊢ 𝑎 ∈ V |
| 52 |
|
vex |
⊢ 𝑏 ∈ V |
| 53 |
|
sneq |
⊢ ( 𝑣 = 𝑎 → { 𝑣 } = { 𝑎 } ) |
| 54 |
53
|
difeq2d |
⊢ ( 𝑣 = 𝑎 → ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) = ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) ) |
| 55 |
|
oveq2 |
⊢ ( 𝑣 = 𝑎 → ( 𝐺 NeighbVtx 𝑣 ) = ( 𝐺 NeighbVtx 𝑎 ) ) |
| 56 |
55
|
eleq2d |
⊢ ( 𝑣 = 𝑎 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 57 |
54 56
|
raleqbidv |
⊢ ( 𝑣 = 𝑎 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 58 |
|
sneq |
⊢ ( 𝑣 = 𝑏 → { 𝑣 } = { 𝑏 } ) |
| 59 |
58
|
difeq2d |
⊢ ( 𝑣 = 𝑏 → ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) = ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) ) |
| 60 |
|
oveq2 |
⊢ ( 𝑣 = 𝑏 → ( 𝐺 NeighbVtx 𝑣 ) = ( 𝐺 NeighbVtx 𝑏 ) ) |
| 61 |
60
|
eleq2d |
⊢ ( 𝑣 = 𝑏 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 62 |
59 61
|
raleqbidv |
⊢ ( 𝑣 = 𝑏 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 63 |
51 52 57 62
|
ralpr |
⊢ ( ∀ 𝑣 ∈ { 𝑎 , 𝑏 } ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 64 |
|
difprsn1 |
⊢ ( 𝑎 ≠ 𝑏 → ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) = { 𝑏 } ) |
| 65 |
64
|
raleqdv |
⊢ ( 𝑎 ≠ 𝑏 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ ∀ 𝑛 ∈ { 𝑏 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 66 |
|
eleq1 |
⊢ ( 𝑛 = 𝑏 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 67 |
52 66
|
ralsn |
⊢ ( ∀ 𝑛 ∈ { 𝑏 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
| 68 |
65 67
|
bitrdi |
⊢ ( 𝑎 ≠ 𝑏 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 69 |
|
difprsn2 |
⊢ ( 𝑎 ≠ 𝑏 → ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) = { 𝑎 } ) |
| 70 |
69
|
raleqdv |
⊢ ( 𝑎 ≠ 𝑏 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ ∀ 𝑛 ∈ { 𝑎 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 71 |
|
eleq1 |
⊢ ( 𝑛 = 𝑎 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 72 |
51 71
|
ralsn |
⊢ ( ∀ 𝑛 ∈ { 𝑎 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) |
| 73 |
70 72
|
bitrdi |
⊢ ( 𝑎 ≠ 𝑏 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 74 |
68 73
|
anbi12d |
⊢ ( 𝑎 ≠ 𝑏 → ( ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ↔ ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) |
| 75 |
63 74
|
bitrid |
⊢ ( 𝑎 ≠ 𝑏 → ( ∀ 𝑣 ∈ { 𝑎 , 𝑏 } ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) |
| 76 |
50 75
|
sylan9bbr |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) |
| 77 |
46 76
|
bibi12d |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( ( 𝑉 ∈ 𝐸 ↔ ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) ) |
| 78 |
77
|
adantl |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) → ( ( 𝑉 ∈ 𝐸 ↔ ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) ) |
| 79 |
44 78
|
mpbird |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) → ( 𝑉 ∈ 𝐸 ↔ ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
| 80 |
79
|
ex |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑉 ∈ 𝐸 ↔ ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) ) |
| 81 |
80
|
rexlimdvva |
⊢ ( 𝐺 ∈ UHGraph → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑉 ∈ 𝐸 ↔ ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) ) |
| 82 |
5 81
|
biimtrid |
⊢ ( 𝐺 ∈ UHGraph → ( ( ♯ ‘ 𝑉 ) = 2 → ( 𝑉 ∈ 𝐸 ↔ ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) ) |
| 83 |
82
|
imp |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 2 ) → ( 𝑉 ∈ 𝐸 ↔ ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |