| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
⊢ ( 𝐵 ∈ ℕ0 ↔ ( 𝐵 ∈ ℕ ∨ 𝐵 = 0 ) ) |
| 2 |
|
elnn0 |
⊢ ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) |
| 3 |
|
nnaddcom |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
| 4 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
| 5 |
|
readdlid |
⊢ ( 𝐵 ∈ ℝ → ( 0 + 𝐵 ) = 𝐵 ) |
| 6 |
|
readdrid |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 0 ) = 𝐵 ) |
| 7 |
5 6
|
eqtr4d |
⊢ ( 𝐵 ∈ ℝ → ( 0 + 𝐵 ) = ( 𝐵 + 0 ) ) |
| 8 |
4 7
|
syl |
⊢ ( 𝐵 ∈ ℕ → ( 0 + 𝐵 ) = ( 𝐵 + 0 ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 + 𝐵 ) = ( 0 + 𝐵 ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝐴 = 0 → ( 𝐵 + 𝐴 ) = ( 𝐵 + 0 ) ) |
| 11 |
9 10
|
eqeq12d |
⊢ ( 𝐴 = 0 → ( ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ↔ ( 0 + 𝐵 ) = ( 𝐵 + 0 ) ) ) |
| 12 |
8 11
|
syl5ibrcom |
⊢ ( 𝐵 ∈ ℕ → ( 𝐴 = 0 → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) ) |
| 13 |
12
|
impcom |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
| 14 |
3 13
|
jaoian |
⊢ ( ( ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
| 15 |
2 14
|
sylanb |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
| 16 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
| 17 |
|
readdrid |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 0 ) = 𝐴 ) |
| 18 |
|
readdlid |
⊢ ( 𝐴 ∈ ℝ → ( 0 + 𝐴 ) = 𝐴 ) |
| 19 |
17 18
|
eqtr4d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 0 ) = ( 0 + 𝐴 ) ) |
| 20 |
16 19
|
syl |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 + 0 ) = ( 0 + 𝐴 ) ) |
| 21 |
|
oveq2 |
⊢ ( 𝐵 = 0 → ( 𝐴 + 𝐵 ) = ( 𝐴 + 0 ) ) |
| 22 |
|
oveq1 |
⊢ ( 𝐵 = 0 → ( 𝐵 + 𝐴 ) = ( 0 + 𝐴 ) ) |
| 23 |
21 22
|
eqeq12d |
⊢ ( 𝐵 = 0 → ( ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ↔ ( 𝐴 + 0 ) = ( 0 + 𝐴 ) ) ) |
| 24 |
20 23
|
syl5ibrcom |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐵 = 0 → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) ) |
| 25 |
24
|
imp |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 = 0 ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
| 26 |
15 25
|
jaodan |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ ( 𝐵 ∈ ℕ ∨ 𝐵 = 0 ) ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
| 27 |
1 26
|
sylan2b |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |