| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  𝐵  ∈  ℕ0 ) | 
						
							| 2 | 1 | nn0cnd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | rernegcl | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  −ℝ  𝐴 )  ∈  ℝ ) | 
						
							| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( 0  −ℝ  𝐴 )  ∈  ℝ ) | 
						
							| 5 | 4 | recnd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( 0  −ℝ  𝐴 )  ∈  ℂ ) | 
						
							| 6 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  𝐴  ∈  ℝ ) | 
						
							| 7 | 6 | recnd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 8 | 2 5 7 | addassd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐵  +  ( 0  −ℝ  𝐴 ) )  +  𝐴 )  =  ( 𝐵  +  ( ( 0  −ℝ  𝐴 )  +  𝐴 ) ) ) | 
						
							| 9 |  | renegid2 | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 0  −ℝ  𝐴 )  +  𝐴 )  =  0 ) | 
						
							| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( ( 0  −ℝ  𝐴 )  +  𝐴 )  =  0 ) | 
						
							| 11 | 10 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐵  +  ( ( 0  −ℝ  𝐴 )  +  𝐴 ) )  =  ( 𝐵  +  0 ) ) | 
						
							| 12 |  | nn0re | ⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℝ ) | 
						
							| 13 |  | readdrid | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝐵  +  0 )  =  𝐵 ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝐵  ∈  ℕ0  →  ( 𝐵  +  0 )  =  𝐵 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐵  +  0 )  =  𝐵 ) | 
						
							| 16 | 8 11 15 | 3eqtrrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  𝐵  =  ( ( 𝐵  +  ( 0  −ℝ  𝐴 ) )  +  𝐴 ) ) | 
						
							| 17 | 9 | oveq1d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( 0  −ℝ  𝐴 )  +  𝐴 )  +  𝐵 )  =  ( 0  +  𝐵 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  →  ( ( ( 0  −ℝ  𝐴 )  +  𝐴 )  +  𝐵 )  =  ( 0  +  𝐵 ) ) | 
						
							| 19 |  | readdlid | ⊢ ( 𝐵  ∈  ℝ  →  ( 0  +  𝐵 )  =  𝐵 ) | 
						
							| 20 | 12 19 | syl | ⊢ ( 𝐵  ∈  ℕ0  →  ( 0  +  𝐵 )  =  𝐵 ) | 
						
							| 21 | 18 20 | sylan9eq | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( ( ( 0  −ℝ  𝐴 )  +  𝐴 )  +  𝐵 )  =  𝐵 ) | 
						
							| 22 |  | nnnn0 | ⊢ ( ( 0  −ℝ  𝐴 )  ∈  ℕ  →  ( 0  −ℝ  𝐴 )  ∈  ℕ0 ) | 
						
							| 23 |  | nn0addcom | ⊢ ( ( ( 0  −ℝ  𝐴 )  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 0  −ℝ  𝐴 )  +  𝐵 )  =  ( 𝐵  +  ( 0  −ℝ  𝐴 ) ) ) | 
						
							| 24 | 22 23 | sylan | ⊢ ( ( ( 0  −ℝ  𝐴 )  ∈  ℕ  ∧  𝐵  ∈  ℕ0 )  →  ( ( 0  −ℝ  𝐴 )  +  𝐵 )  =  ( 𝐵  +  ( 0  −ℝ  𝐴 ) ) ) | 
						
							| 25 | 24 | adantll | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( ( 0  −ℝ  𝐴 )  +  𝐵 )  =  ( 𝐵  +  ( 0  −ℝ  𝐴 ) ) ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( ( ( 0  −ℝ  𝐴 )  +  𝐵 )  +  𝐴 )  =  ( ( 𝐵  +  ( 0  −ℝ  𝐴 ) )  +  𝐴 ) ) | 
						
							| 27 | 16 21 26 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( ( ( 0  −ℝ  𝐴 )  +  𝐴 )  +  𝐵 )  =  ( ( ( 0  −ℝ  𝐴 )  +  𝐵 )  +  𝐴 ) ) | 
						
							| 28 | 5 7 2 | addassd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( ( ( 0  −ℝ  𝐴 )  +  𝐴 )  +  𝐵 )  =  ( ( 0  −ℝ  𝐴 )  +  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 29 | 5 2 7 | addassd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( ( ( 0  −ℝ  𝐴 )  +  𝐵 )  +  𝐴 )  =  ( ( 0  −ℝ  𝐴 )  +  ( 𝐵  +  𝐴 ) ) ) | 
						
							| 30 | 27 28 29 | 3eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( ( 0  −ℝ  𝐴 )  +  ( 𝐴  +  𝐵 ) )  =  ( ( 0  −ℝ  𝐴 )  +  ( 𝐵  +  𝐴 ) ) ) | 
						
							| 31 | 7 2 | addcld | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  +  𝐵 )  ∈  ℂ ) | 
						
							| 32 | 2 7 | addcld | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐵  +  𝐴 )  ∈  ℂ ) | 
						
							| 33 | 5 31 32 | sn-addcand | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( ( ( 0  −ℝ  𝐴 )  +  ( 𝐴  +  𝐵 ) )  =  ( ( 0  −ℝ  𝐴 )  +  ( 𝐵  +  𝐴 ) )  ↔  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) ) | 
						
							| 34 | 30 33 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) |