| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reelznn0nn | ⊢ ( 𝐴  ∈  ℤ  ↔  ( 𝐴  ∈  ℕ0  ∨  ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ ) ) ) | 
						
							| 2 |  | reelznn0nn | ⊢ ( 𝐵  ∈  ℤ  ↔  ( 𝐵  ∈  ℕ0  ∨  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) ) ) | 
						
							| 3 |  | nn0addcom | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 4 |  | zaddcomlem | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 5 |  | zaddcomlem | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ )  ∧  𝐴  ∈  ℕ0 )  →  ( 𝐵  +  𝐴 )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 6 | 5 | eqcomd | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ )  ∧  𝐴  ∈  ℕ0 )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 7 | 6 | ancoms | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 8 |  | renegid2 | ⊢ ( 𝐵  ∈  ℝ  →  ( ( 0  −ℝ  𝐵 )  +  𝐵 )  =  0 ) | 
						
							| 9 | 8 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( 0  −ℝ  𝐵 )  +  𝐵 )  =  0 ) | 
						
							| 10 |  | renegid2 | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 0  −ℝ  𝐴 )  +  𝐴 )  =  0 ) | 
						
							| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( 0  −ℝ  𝐴 )  +  𝐴 )  =  0 ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( ( 0  −ℝ  𝐴 )  +  𝐴 )  +  𝐵 )  =  ( 0  +  𝐵 ) ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( 0  −ℝ  𝐴 )  ∈  ℕ ) | 
						
							| 14 | 13 | nncnd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( 0  −ℝ  𝐴 )  ∈  ℂ ) | 
						
							| 15 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  𝐴  ∈  ℝ ) | 
						
							| 16 | 15 | recnd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  𝐴  ∈  ℂ ) | 
						
							| 17 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  𝐵  ∈  ℝ ) | 
						
							| 18 | 17 | recnd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  𝐵  ∈  ℂ ) | 
						
							| 19 | 14 16 18 | addassd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( ( 0  −ℝ  𝐴 )  +  𝐴 )  +  𝐵 )  =  ( ( 0  −ℝ  𝐴 )  +  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 20 |  | readdlid | ⊢ ( 𝐵  ∈  ℝ  →  ( 0  +  𝐵 )  =  𝐵 ) | 
						
							| 21 | 20 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( 0  +  𝐵 )  =  𝐵 ) | 
						
							| 22 | 12 19 21 | 3eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( 0  −ℝ  𝐴 )  +  ( 𝐴  +  𝐵 ) )  =  𝐵 ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( 0  −ℝ  𝐵 )  +  ( ( 0  −ℝ  𝐴 )  +  ( 𝐴  +  𝐵 ) ) )  =  ( ( 0  −ℝ  𝐵 )  +  𝐵 ) ) | 
						
							| 24 | 9 23 11 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( 0  −ℝ  𝐵 )  +  ( ( 0  −ℝ  𝐴 )  +  ( 𝐴  +  𝐵 ) ) )  =  ( ( 0  −ℝ  𝐴 )  +  𝐴 ) ) | 
						
							| 25 |  | simprr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( 0  −ℝ  𝐵 )  ∈  ℕ ) | 
						
							| 26 | 25 | nncnd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( 0  −ℝ  𝐵 )  ∈  ℂ ) | 
						
							| 27 | 16 18 | addcld | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( 𝐴  +  𝐵 )  ∈  ℂ ) | 
						
							| 28 | 26 14 27 | addassd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( ( 0  −ℝ  𝐵 )  +  ( 0  −ℝ  𝐴 ) )  +  ( 𝐴  +  𝐵 ) )  =  ( ( 0  −ℝ  𝐵 )  +  ( ( 0  −ℝ  𝐴 )  +  ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 29 | 9 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( ( 0  −ℝ  𝐵 )  +  𝐵 )  +  𝐴 )  =  ( 0  +  𝐴 ) ) | 
						
							| 30 | 26 18 16 | addassd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( ( 0  −ℝ  𝐵 )  +  𝐵 )  +  𝐴 )  =  ( ( 0  −ℝ  𝐵 )  +  ( 𝐵  +  𝐴 ) ) ) | 
						
							| 31 |  | readdlid | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  +  𝐴 )  =  𝐴 ) | 
						
							| 32 | 31 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( 0  +  𝐴 )  =  𝐴 ) | 
						
							| 33 | 29 30 32 | 3eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( 0  −ℝ  𝐵 )  +  ( 𝐵  +  𝐴 ) )  =  𝐴 ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( 0  −ℝ  𝐴 )  +  ( ( 0  −ℝ  𝐵 )  +  ( 𝐵  +  𝐴 ) ) )  =  ( ( 0  −ℝ  𝐴 )  +  𝐴 ) ) | 
						
							| 35 | 24 28 34 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( ( 0  −ℝ  𝐵 )  +  ( 0  −ℝ  𝐴 ) )  +  ( 𝐴  +  𝐵 ) )  =  ( ( 0  −ℝ  𝐴 )  +  ( ( 0  −ℝ  𝐵 )  +  ( 𝐵  +  𝐴 ) ) ) ) | 
						
							| 36 |  | nnaddcom | ⊢ ( ( ( 0  −ℝ  𝐴 )  ∈  ℕ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ )  →  ( ( 0  −ℝ  𝐴 )  +  ( 0  −ℝ  𝐵 ) )  =  ( ( 0  −ℝ  𝐵 )  +  ( 0  −ℝ  𝐴 ) ) ) | 
						
							| 37 | 36 | ad2ant2l | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( 0  −ℝ  𝐴 )  +  ( 0  −ℝ  𝐵 ) )  =  ( ( 0  −ℝ  𝐵 )  +  ( 0  −ℝ  𝐴 ) ) ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( ( 0  −ℝ  𝐴 )  +  ( 0  −ℝ  𝐵 ) )  +  ( 𝐴  +  𝐵 ) )  =  ( ( ( 0  −ℝ  𝐵 )  +  ( 0  −ℝ  𝐴 ) )  +  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 39 | 18 16 | addcld | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( 𝐵  +  𝐴 )  ∈  ℂ ) | 
						
							| 40 | 14 26 39 | addassd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( ( 0  −ℝ  𝐴 )  +  ( 0  −ℝ  𝐵 ) )  +  ( 𝐵  +  𝐴 ) )  =  ( ( 0  −ℝ  𝐴 )  +  ( ( 0  −ℝ  𝐵 )  +  ( 𝐵  +  𝐴 ) ) ) ) | 
						
							| 41 | 35 38 40 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( ( 0  −ℝ  𝐴 )  +  ( 0  −ℝ  𝐵 ) )  +  ( 𝐴  +  𝐵 ) )  =  ( ( ( 0  −ℝ  𝐴 )  +  ( 0  −ℝ  𝐵 ) )  +  ( 𝐵  +  𝐴 ) ) ) | 
						
							| 42 | 13 25 | nnaddcld | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( 0  −ℝ  𝐴 )  +  ( 0  −ℝ  𝐵 ) )  ∈  ℕ ) | 
						
							| 43 | 42 | nncnd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( 0  −ℝ  𝐴 )  +  ( 0  −ℝ  𝐵 ) )  ∈  ℂ ) | 
						
							| 44 | 43 27 39 | sn-addcand | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( ( ( ( 0  −ℝ  𝐴 )  +  ( 0  −ℝ  𝐵 ) )  +  ( 𝐴  +  𝐵 ) )  =  ( ( ( 0  −ℝ  𝐴 )  +  ( 0  −ℝ  𝐵 ) )  +  ( 𝐵  +  𝐴 ) )  ↔  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) ) | 
						
							| 45 | 41 44 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 46 | 3 4 7 45 | ccase | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∨  ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ ) )  ∧  ( 𝐵  ∈  ℕ0  ∨  ( 𝐵  ∈  ℝ  ∧  ( 0  −ℝ  𝐵 )  ∈  ℕ ) ) )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 47 | 1 2 46 | syl2anb | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) |