| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reelznn0nn |  |-  ( A e. ZZ <-> ( A e. NN0 \/ ( A e. RR /\ ( 0 -R A ) e. NN ) ) ) | 
						
							| 2 |  | reelznn0nn |  |-  ( B e. ZZ <-> ( B e. NN0 \/ ( B e. RR /\ ( 0 -R B ) e. NN ) ) ) | 
						
							| 3 |  | nn0addcom |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A + B ) = ( B + A ) ) | 
						
							| 4 |  | zaddcomlem |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( A + B ) = ( B + A ) ) | 
						
							| 5 |  | zaddcomlem |  |-  ( ( ( B e. RR /\ ( 0 -R B ) e. NN ) /\ A e. NN0 ) -> ( B + A ) = ( A + B ) ) | 
						
							| 6 | 5 | eqcomd |  |-  ( ( ( B e. RR /\ ( 0 -R B ) e. NN ) /\ A e. NN0 ) -> ( A + B ) = ( B + A ) ) | 
						
							| 7 | 6 | ancoms |  |-  ( ( A e. NN0 /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( A + B ) = ( B + A ) ) | 
						
							| 8 |  | renegid2 |  |-  ( B e. RR -> ( ( 0 -R B ) + B ) = 0 ) | 
						
							| 9 | 8 | ad2antrl |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R B ) + B ) = 0 ) | 
						
							| 10 |  | renegid2 |  |-  ( A e. RR -> ( ( 0 -R A ) + A ) = 0 ) | 
						
							| 11 | 10 | ad2antrr |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R A ) + A ) = 0 ) | 
						
							| 12 | 11 | oveq1d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( ( 0 -R A ) + A ) + B ) = ( 0 + B ) ) | 
						
							| 13 |  | simplr |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( 0 -R A ) e. NN ) | 
						
							| 14 | 13 | nncnd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( 0 -R A ) e. CC ) | 
						
							| 15 |  | simpll |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> A e. RR ) | 
						
							| 16 | 15 | recnd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> A e. CC ) | 
						
							| 17 |  | simprl |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> B e. RR ) | 
						
							| 18 | 17 | recnd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> B e. CC ) | 
						
							| 19 | 14 16 18 | addassd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( ( 0 -R A ) + A ) + B ) = ( ( 0 -R A ) + ( A + B ) ) ) | 
						
							| 20 |  | readdlid |  |-  ( B e. RR -> ( 0 + B ) = B ) | 
						
							| 21 | 20 | ad2antrl |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( 0 + B ) = B ) | 
						
							| 22 | 12 19 21 | 3eqtr3d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R A ) + ( A + B ) ) = B ) | 
						
							| 23 | 22 | oveq2d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R B ) + ( ( 0 -R A ) + ( A + B ) ) ) = ( ( 0 -R B ) + B ) ) | 
						
							| 24 | 9 23 11 | 3eqtr4d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R B ) + ( ( 0 -R A ) + ( A + B ) ) ) = ( ( 0 -R A ) + A ) ) | 
						
							| 25 |  | simprr |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( 0 -R B ) e. NN ) | 
						
							| 26 | 25 | nncnd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( 0 -R B ) e. CC ) | 
						
							| 27 | 16 18 | addcld |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( A + B ) e. CC ) | 
						
							| 28 | 26 14 27 | addassd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( ( 0 -R B ) + ( 0 -R A ) ) + ( A + B ) ) = ( ( 0 -R B ) + ( ( 0 -R A ) + ( A + B ) ) ) ) | 
						
							| 29 | 9 | oveq1d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( ( 0 -R B ) + B ) + A ) = ( 0 + A ) ) | 
						
							| 30 | 26 18 16 | addassd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( ( 0 -R B ) + B ) + A ) = ( ( 0 -R B ) + ( B + A ) ) ) | 
						
							| 31 |  | readdlid |  |-  ( A e. RR -> ( 0 + A ) = A ) | 
						
							| 32 | 31 | ad2antrr |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( 0 + A ) = A ) | 
						
							| 33 | 29 30 32 | 3eqtr3d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R B ) + ( B + A ) ) = A ) | 
						
							| 34 | 33 | oveq2d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R A ) + ( ( 0 -R B ) + ( B + A ) ) ) = ( ( 0 -R A ) + A ) ) | 
						
							| 35 | 24 28 34 | 3eqtr4d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( ( 0 -R B ) + ( 0 -R A ) ) + ( A + B ) ) = ( ( 0 -R A ) + ( ( 0 -R B ) + ( B + A ) ) ) ) | 
						
							| 36 |  | nnaddcom |  |-  ( ( ( 0 -R A ) e. NN /\ ( 0 -R B ) e. NN ) -> ( ( 0 -R A ) + ( 0 -R B ) ) = ( ( 0 -R B ) + ( 0 -R A ) ) ) | 
						
							| 37 | 36 | ad2ant2l |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R A ) + ( 0 -R B ) ) = ( ( 0 -R B ) + ( 0 -R A ) ) ) | 
						
							| 38 | 37 | oveq1d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( ( 0 -R A ) + ( 0 -R B ) ) + ( A + B ) ) = ( ( ( 0 -R B ) + ( 0 -R A ) ) + ( A + B ) ) ) | 
						
							| 39 | 18 16 | addcld |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( B + A ) e. CC ) | 
						
							| 40 | 14 26 39 | addassd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( ( 0 -R A ) + ( 0 -R B ) ) + ( B + A ) ) = ( ( 0 -R A ) + ( ( 0 -R B ) + ( B + A ) ) ) ) | 
						
							| 41 | 35 38 40 | 3eqtr4d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( ( 0 -R A ) + ( 0 -R B ) ) + ( A + B ) ) = ( ( ( 0 -R A ) + ( 0 -R B ) ) + ( B + A ) ) ) | 
						
							| 42 | 13 25 | nnaddcld |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R A ) + ( 0 -R B ) ) e. NN ) | 
						
							| 43 | 42 | nncnd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R A ) + ( 0 -R B ) ) e. CC ) | 
						
							| 44 | 43 27 39 | sn-addcand |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( ( ( 0 -R A ) + ( 0 -R B ) ) + ( A + B ) ) = ( ( ( 0 -R A ) + ( 0 -R B ) ) + ( B + A ) ) <-> ( A + B ) = ( B + A ) ) ) | 
						
							| 45 | 41 44 | mpbid |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( A + B ) = ( B + A ) ) | 
						
							| 46 | 3 4 7 45 | ccase |  |-  ( ( ( A e. NN0 \/ ( A e. RR /\ ( 0 -R A ) e. NN ) ) /\ ( B e. NN0 \/ ( B e. RR /\ ( 0 -R B ) e. NN ) ) ) -> ( A + B ) = ( B + A ) ) | 
						
							| 47 | 1 2 46 | syl2anb |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) = ( B + A ) ) |