| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegmulnnass.a |
|- ( ph -> A e. RR ) |
| 2 |
|
renegmulnnass.n |
|- ( ph -> N e. NN ) |
| 3 |
|
oveq2 |
|- ( x = 1 -> ( ( 0 -R A ) x. x ) = ( ( 0 -R A ) x. 1 ) ) |
| 4 |
|
oveq2 |
|- ( x = 1 -> ( A x. x ) = ( A x. 1 ) ) |
| 5 |
4
|
oveq2d |
|- ( x = 1 -> ( 0 -R ( A x. x ) ) = ( 0 -R ( A x. 1 ) ) ) |
| 6 |
3 5
|
eqeq12d |
|- ( x = 1 -> ( ( ( 0 -R A ) x. x ) = ( 0 -R ( A x. x ) ) <-> ( ( 0 -R A ) x. 1 ) = ( 0 -R ( A x. 1 ) ) ) ) |
| 7 |
|
oveq2 |
|- ( x = y -> ( ( 0 -R A ) x. x ) = ( ( 0 -R A ) x. y ) ) |
| 8 |
|
oveq2 |
|- ( x = y -> ( A x. x ) = ( A x. y ) ) |
| 9 |
8
|
oveq2d |
|- ( x = y -> ( 0 -R ( A x. x ) ) = ( 0 -R ( A x. y ) ) ) |
| 10 |
7 9
|
eqeq12d |
|- ( x = y -> ( ( ( 0 -R A ) x. x ) = ( 0 -R ( A x. x ) ) <-> ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) ) |
| 11 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( ( 0 -R A ) x. x ) = ( ( 0 -R A ) x. ( y + 1 ) ) ) |
| 12 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( A x. x ) = ( A x. ( y + 1 ) ) ) |
| 13 |
12
|
oveq2d |
|- ( x = ( y + 1 ) -> ( 0 -R ( A x. x ) ) = ( 0 -R ( A x. ( y + 1 ) ) ) ) |
| 14 |
11 13
|
eqeq12d |
|- ( x = ( y + 1 ) -> ( ( ( 0 -R A ) x. x ) = ( 0 -R ( A x. x ) ) <-> ( ( 0 -R A ) x. ( y + 1 ) ) = ( 0 -R ( A x. ( y + 1 ) ) ) ) ) |
| 15 |
|
oveq2 |
|- ( x = N -> ( ( 0 -R A ) x. x ) = ( ( 0 -R A ) x. N ) ) |
| 16 |
|
oveq2 |
|- ( x = N -> ( A x. x ) = ( A x. N ) ) |
| 17 |
16
|
oveq2d |
|- ( x = N -> ( 0 -R ( A x. x ) ) = ( 0 -R ( A x. N ) ) ) |
| 18 |
15 17
|
eqeq12d |
|- ( x = N -> ( ( ( 0 -R A ) x. x ) = ( 0 -R ( A x. x ) ) <-> ( ( 0 -R A ) x. N ) = ( 0 -R ( A x. N ) ) ) ) |
| 19 |
|
rernegcl |
|- ( A e. RR -> ( 0 -R A ) e. RR ) |
| 20 |
1 19
|
syl |
|- ( ph -> ( 0 -R A ) e. RR ) |
| 21 |
|
ax-1rid |
|- ( ( 0 -R A ) e. RR -> ( ( 0 -R A ) x. 1 ) = ( 0 -R A ) ) |
| 22 |
20 21
|
syl |
|- ( ph -> ( ( 0 -R A ) x. 1 ) = ( 0 -R A ) ) |
| 23 |
|
ax-1rid |
|- ( A e. RR -> ( A x. 1 ) = A ) |
| 24 |
1 23
|
syl |
|- ( ph -> ( A x. 1 ) = A ) |
| 25 |
24
|
oveq2d |
|- ( ph -> ( 0 -R ( A x. 1 ) ) = ( 0 -R A ) ) |
| 26 |
22 25
|
eqtr4d |
|- ( ph -> ( ( 0 -R A ) x. 1 ) = ( 0 -R ( A x. 1 ) ) ) |
| 27 |
|
simpr |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) |
| 28 |
27
|
oveq2d |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R A ) + ( ( 0 -R A ) x. y ) ) = ( ( 0 -R A ) + ( 0 -R ( A x. y ) ) ) ) |
| 29 |
|
0red |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> 0 e. RR ) |
| 30 |
1
|
ad2antrr |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> A e. RR ) |
| 31 |
|
nnre |
|- ( y e. NN -> y e. RR ) |
| 32 |
31
|
ad2antlr |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> y e. RR ) |
| 33 |
30 32
|
remulcld |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( A x. y ) e. RR ) |
| 34 |
|
rernegcl |
|- ( ( A x. y ) e. RR -> ( 0 -R ( A x. y ) ) e. RR ) |
| 35 |
33 34
|
syl |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( 0 -R ( A x. y ) ) e. RR ) |
| 36 |
|
readdsub |
|- ( ( 0 e. RR /\ ( 0 -R ( A x. y ) ) e. RR /\ A e. RR ) -> ( ( 0 + ( 0 -R ( A x. y ) ) ) -R A ) = ( ( 0 -R A ) + ( 0 -R ( A x. y ) ) ) ) |
| 37 |
29 35 30 36
|
syl3anc |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 + ( 0 -R ( A x. y ) ) ) -R A ) = ( ( 0 -R A ) + ( 0 -R ( A x. y ) ) ) ) |
| 38 |
|
readdlid |
|- ( ( 0 -R ( A x. y ) ) e. RR -> ( 0 + ( 0 -R ( A x. y ) ) ) = ( 0 -R ( A x. y ) ) ) |
| 39 |
35 38
|
syl |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( 0 + ( 0 -R ( A x. y ) ) ) = ( 0 -R ( A x. y ) ) ) |
| 40 |
39
|
oveq1d |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 + ( 0 -R ( A x. y ) ) ) -R A ) = ( ( 0 -R ( A x. y ) ) -R A ) ) |
| 41 |
37 40
|
eqtr3d |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R A ) + ( 0 -R ( A x. y ) ) ) = ( ( 0 -R ( A x. y ) ) -R A ) ) |
| 42 |
|
resubsub4 |
|- ( ( 0 e. RR /\ ( A x. y ) e. RR /\ A e. RR ) -> ( ( 0 -R ( A x. y ) ) -R A ) = ( 0 -R ( ( A x. y ) + A ) ) ) |
| 43 |
29 33 30 42
|
syl3anc |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R ( A x. y ) ) -R A ) = ( 0 -R ( ( A x. y ) + A ) ) ) |
| 44 |
28 41 43
|
3eqtrd |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R A ) + ( ( 0 -R A ) x. y ) ) = ( 0 -R ( ( A x. y ) + A ) ) ) |
| 45 |
22
|
oveq1d |
|- ( ph -> ( ( ( 0 -R A ) x. 1 ) + ( ( 0 -R A ) x. y ) ) = ( ( 0 -R A ) + ( ( 0 -R A ) x. y ) ) ) |
| 46 |
45
|
ad2antrr |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( ( 0 -R A ) x. 1 ) + ( ( 0 -R A ) x. y ) ) = ( ( 0 -R A ) + ( ( 0 -R A ) x. y ) ) ) |
| 47 |
24
|
oveq2d |
|- ( ph -> ( ( A x. y ) + ( A x. 1 ) ) = ( ( A x. y ) + A ) ) |
| 48 |
47
|
oveq2d |
|- ( ph -> ( 0 -R ( ( A x. y ) + ( A x. 1 ) ) ) = ( 0 -R ( ( A x. y ) + A ) ) ) |
| 49 |
48
|
ad2antrr |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( 0 -R ( ( A x. y ) + ( A x. 1 ) ) ) = ( 0 -R ( ( A x. y ) + A ) ) ) |
| 50 |
44 46 49
|
3eqtr4d |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( ( 0 -R A ) x. 1 ) + ( ( 0 -R A ) x. y ) ) = ( 0 -R ( ( A x. y ) + ( A x. 1 ) ) ) ) |
| 51 |
|
nnadd1com |
|- ( y e. NN -> ( y + 1 ) = ( 1 + y ) ) |
| 52 |
51
|
oveq2d |
|- ( y e. NN -> ( ( 0 -R A ) x. ( y + 1 ) ) = ( ( 0 -R A ) x. ( 1 + y ) ) ) |
| 53 |
52
|
ad2antlr |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R A ) x. ( y + 1 ) ) = ( ( 0 -R A ) x. ( 1 + y ) ) ) |
| 54 |
20
|
recnd |
|- ( ph -> ( 0 -R A ) e. CC ) |
| 55 |
54
|
ad2antrr |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( 0 -R A ) e. CC ) |
| 56 |
|
1cnd |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> 1 e. CC ) |
| 57 |
|
nncn |
|- ( y e. NN -> y e. CC ) |
| 58 |
57
|
ad2antlr |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> y e. CC ) |
| 59 |
55 56 58
|
adddid |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R A ) x. ( 1 + y ) ) = ( ( ( 0 -R A ) x. 1 ) + ( ( 0 -R A ) x. y ) ) ) |
| 60 |
53 59
|
eqtrd |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R A ) x. ( y + 1 ) ) = ( ( ( 0 -R A ) x. 1 ) + ( ( 0 -R A ) x. y ) ) ) |
| 61 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 62 |
61
|
ad2antrr |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> A e. CC ) |
| 63 |
62 58 56
|
adddid |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( A x. ( y + 1 ) ) = ( ( A x. y ) + ( A x. 1 ) ) ) |
| 64 |
63
|
oveq2d |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( 0 -R ( A x. ( y + 1 ) ) ) = ( 0 -R ( ( A x. y ) + ( A x. 1 ) ) ) ) |
| 65 |
50 60 64
|
3eqtr4d |
|- ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R A ) x. ( y + 1 ) ) = ( 0 -R ( A x. ( y + 1 ) ) ) ) |
| 66 |
6 10 14 18 26 65
|
nnindd |
|- ( ( ph /\ N e. NN ) -> ( ( 0 -R A ) x. N ) = ( 0 -R ( A x. N ) ) ) |
| 67 |
2 66
|
mpdan |
|- ( ph -> ( ( 0 -R A ) x. N ) = ( 0 -R ( A x. N ) ) ) |