| Step | Hyp | Ref | Expression | 
						
							| 1 |  | renegmulnnass.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | renegmulnnass.n |  |-  ( ph -> N e. NN ) | 
						
							| 3 |  | oveq2 |  |-  ( x = 1 -> ( ( 0 -R A ) x. x ) = ( ( 0 -R A ) x. 1 ) ) | 
						
							| 4 |  | oveq2 |  |-  ( x = 1 -> ( A x. x ) = ( A x. 1 ) ) | 
						
							| 5 | 4 | oveq2d |  |-  ( x = 1 -> ( 0 -R ( A x. x ) ) = ( 0 -R ( A x. 1 ) ) ) | 
						
							| 6 | 3 5 | eqeq12d |  |-  ( x = 1 -> ( ( ( 0 -R A ) x. x ) = ( 0 -R ( A x. x ) ) <-> ( ( 0 -R A ) x. 1 ) = ( 0 -R ( A x. 1 ) ) ) ) | 
						
							| 7 |  | oveq2 |  |-  ( x = y -> ( ( 0 -R A ) x. x ) = ( ( 0 -R A ) x. y ) ) | 
						
							| 8 |  | oveq2 |  |-  ( x = y -> ( A x. x ) = ( A x. y ) ) | 
						
							| 9 | 8 | oveq2d |  |-  ( x = y -> ( 0 -R ( A x. x ) ) = ( 0 -R ( A x. y ) ) ) | 
						
							| 10 | 7 9 | eqeq12d |  |-  ( x = y -> ( ( ( 0 -R A ) x. x ) = ( 0 -R ( A x. x ) ) <-> ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) ) | 
						
							| 11 |  | oveq2 |  |-  ( x = ( y + 1 ) -> ( ( 0 -R A ) x. x ) = ( ( 0 -R A ) x. ( y + 1 ) ) ) | 
						
							| 12 |  | oveq2 |  |-  ( x = ( y + 1 ) -> ( A x. x ) = ( A x. ( y + 1 ) ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( x = ( y + 1 ) -> ( 0 -R ( A x. x ) ) = ( 0 -R ( A x. ( y + 1 ) ) ) ) | 
						
							| 14 | 11 13 | eqeq12d |  |-  ( x = ( y + 1 ) -> ( ( ( 0 -R A ) x. x ) = ( 0 -R ( A x. x ) ) <-> ( ( 0 -R A ) x. ( y + 1 ) ) = ( 0 -R ( A x. ( y + 1 ) ) ) ) ) | 
						
							| 15 |  | oveq2 |  |-  ( x = N -> ( ( 0 -R A ) x. x ) = ( ( 0 -R A ) x. N ) ) | 
						
							| 16 |  | oveq2 |  |-  ( x = N -> ( A x. x ) = ( A x. N ) ) | 
						
							| 17 | 16 | oveq2d |  |-  ( x = N -> ( 0 -R ( A x. x ) ) = ( 0 -R ( A x. N ) ) ) | 
						
							| 18 | 15 17 | eqeq12d |  |-  ( x = N -> ( ( ( 0 -R A ) x. x ) = ( 0 -R ( A x. x ) ) <-> ( ( 0 -R A ) x. N ) = ( 0 -R ( A x. N ) ) ) ) | 
						
							| 19 |  | rernegcl |  |-  ( A e. RR -> ( 0 -R A ) e. RR ) | 
						
							| 20 | 1 19 | syl |  |-  ( ph -> ( 0 -R A ) e. RR ) | 
						
							| 21 |  | ax-1rid |  |-  ( ( 0 -R A ) e. RR -> ( ( 0 -R A ) x. 1 ) = ( 0 -R A ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ph -> ( ( 0 -R A ) x. 1 ) = ( 0 -R A ) ) | 
						
							| 23 |  | ax-1rid |  |-  ( A e. RR -> ( A x. 1 ) = A ) | 
						
							| 24 | 1 23 | syl |  |-  ( ph -> ( A x. 1 ) = A ) | 
						
							| 25 | 24 | oveq2d |  |-  ( ph -> ( 0 -R ( A x. 1 ) ) = ( 0 -R A ) ) | 
						
							| 26 | 22 25 | eqtr4d |  |-  ( ph -> ( ( 0 -R A ) x. 1 ) = ( 0 -R ( A x. 1 ) ) ) | 
						
							| 27 |  | simpr |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) | 
						
							| 28 | 27 | oveq2d |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R A ) + ( ( 0 -R A ) x. y ) ) = ( ( 0 -R A ) + ( 0 -R ( A x. y ) ) ) ) | 
						
							| 29 |  | 0red |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> 0 e. RR ) | 
						
							| 30 | 1 | ad2antrr |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> A e. RR ) | 
						
							| 31 |  | nnre |  |-  ( y e. NN -> y e. RR ) | 
						
							| 32 | 31 | ad2antlr |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> y e. RR ) | 
						
							| 33 | 30 32 | remulcld |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( A x. y ) e. RR ) | 
						
							| 34 |  | rernegcl |  |-  ( ( A x. y ) e. RR -> ( 0 -R ( A x. y ) ) e. RR ) | 
						
							| 35 | 33 34 | syl |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( 0 -R ( A x. y ) ) e. RR ) | 
						
							| 36 |  | readdsub |  |-  ( ( 0 e. RR /\ ( 0 -R ( A x. y ) ) e. RR /\ A e. RR ) -> ( ( 0 + ( 0 -R ( A x. y ) ) ) -R A ) = ( ( 0 -R A ) + ( 0 -R ( A x. y ) ) ) ) | 
						
							| 37 | 29 35 30 36 | syl3anc |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 + ( 0 -R ( A x. y ) ) ) -R A ) = ( ( 0 -R A ) + ( 0 -R ( A x. y ) ) ) ) | 
						
							| 38 |  | readdlid |  |-  ( ( 0 -R ( A x. y ) ) e. RR -> ( 0 + ( 0 -R ( A x. y ) ) ) = ( 0 -R ( A x. y ) ) ) | 
						
							| 39 | 35 38 | syl |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( 0 + ( 0 -R ( A x. y ) ) ) = ( 0 -R ( A x. y ) ) ) | 
						
							| 40 | 39 | oveq1d |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 + ( 0 -R ( A x. y ) ) ) -R A ) = ( ( 0 -R ( A x. y ) ) -R A ) ) | 
						
							| 41 | 37 40 | eqtr3d |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R A ) + ( 0 -R ( A x. y ) ) ) = ( ( 0 -R ( A x. y ) ) -R A ) ) | 
						
							| 42 |  | resubsub4 |  |-  ( ( 0 e. RR /\ ( A x. y ) e. RR /\ A e. RR ) -> ( ( 0 -R ( A x. y ) ) -R A ) = ( 0 -R ( ( A x. y ) + A ) ) ) | 
						
							| 43 | 29 33 30 42 | syl3anc |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R ( A x. y ) ) -R A ) = ( 0 -R ( ( A x. y ) + A ) ) ) | 
						
							| 44 | 28 41 43 | 3eqtrd |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R A ) + ( ( 0 -R A ) x. y ) ) = ( 0 -R ( ( A x. y ) + A ) ) ) | 
						
							| 45 | 22 | oveq1d |  |-  ( ph -> ( ( ( 0 -R A ) x. 1 ) + ( ( 0 -R A ) x. y ) ) = ( ( 0 -R A ) + ( ( 0 -R A ) x. y ) ) ) | 
						
							| 46 | 45 | ad2antrr |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( ( 0 -R A ) x. 1 ) + ( ( 0 -R A ) x. y ) ) = ( ( 0 -R A ) + ( ( 0 -R A ) x. y ) ) ) | 
						
							| 47 | 24 | oveq2d |  |-  ( ph -> ( ( A x. y ) + ( A x. 1 ) ) = ( ( A x. y ) + A ) ) | 
						
							| 48 | 47 | oveq2d |  |-  ( ph -> ( 0 -R ( ( A x. y ) + ( A x. 1 ) ) ) = ( 0 -R ( ( A x. y ) + A ) ) ) | 
						
							| 49 | 48 | ad2antrr |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( 0 -R ( ( A x. y ) + ( A x. 1 ) ) ) = ( 0 -R ( ( A x. y ) + A ) ) ) | 
						
							| 50 | 44 46 49 | 3eqtr4d |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( ( 0 -R A ) x. 1 ) + ( ( 0 -R A ) x. y ) ) = ( 0 -R ( ( A x. y ) + ( A x. 1 ) ) ) ) | 
						
							| 51 |  | nnadd1com |  |-  ( y e. NN -> ( y + 1 ) = ( 1 + y ) ) | 
						
							| 52 | 51 | oveq2d |  |-  ( y e. NN -> ( ( 0 -R A ) x. ( y + 1 ) ) = ( ( 0 -R A ) x. ( 1 + y ) ) ) | 
						
							| 53 | 52 | ad2antlr |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R A ) x. ( y + 1 ) ) = ( ( 0 -R A ) x. ( 1 + y ) ) ) | 
						
							| 54 | 20 | recnd |  |-  ( ph -> ( 0 -R A ) e. CC ) | 
						
							| 55 | 54 | ad2antrr |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( 0 -R A ) e. CC ) | 
						
							| 56 |  | 1cnd |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> 1 e. CC ) | 
						
							| 57 |  | nncn |  |-  ( y e. NN -> y e. CC ) | 
						
							| 58 | 57 | ad2antlr |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> y e. CC ) | 
						
							| 59 | 55 56 58 | adddid |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R A ) x. ( 1 + y ) ) = ( ( ( 0 -R A ) x. 1 ) + ( ( 0 -R A ) x. y ) ) ) | 
						
							| 60 | 53 59 | eqtrd |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R A ) x. ( y + 1 ) ) = ( ( ( 0 -R A ) x. 1 ) + ( ( 0 -R A ) x. y ) ) ) | 
						
							| 61 | 1 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 62 | 61 | ad2antrr |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> A e. CC ) | 
						
							| 63 | 62 58 56 | adddid |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( A x. ( y + 1 ) ) = ( ( A x. y ) + ( A x. 1 ) ) ) | 
						
							| 64 | 63 | oveq2d |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( 0 -R ( A x. ( y + 1 ) ) ) = ( 0 -R ( ( A x. y ) + ( A x. 1 ) ) ) ) | 
						
							| 65 | 50 60 64 | 3eqtr4d |  |-  ( ( ( ph /\ y e. NN ) /\ ( ( 0 -R A ) x. y ) = ( 0 -R ( A x. y ) ) ) -> ( ( 0 -R A ) x. ( y + 1 ) ) = ( 0 -R ( A x. ( y + 1 ) ) ) ) | 
						
							| 66 | 6 10 14 18 26 65 | nnindd |  |-  ( ( ph /\ N e. NN ) -> ( ( 0 -R A ) x. N ) = ( 0 -R ( A x. N ) ) ) | 
						
							| 67 | 2 66 | mpdan |  |-  ( ph -> ( ( 0 -R A ) x. N ) = ( 0 -R ( A x. N ) ) ) |