| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 |  |-  ( B e. NN0 <-> ( B e. NN \/ B = 0 ) ) | 
						
							| 2 |  | elnn0 |  |-  ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) | 
						
							| 3 |  | nnmulcom |  |-  ( ( A e. NN /\ B e. NN ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 4 |  | nnre |  |-  ( B e. NN -> B e. RR ) | 
						
							| 5 |  | remul02 |  |-  ( B e. RR -> ( 0 x. B ) = 0 ) | 
						
							| 6 |  | remul01 |  |-  ( B e. RR -> ( B x. 0 ) = 0 ) | 
						
							| 7 | 5 6 | eqtr4d |  |-  ( B e. RR -> ( 0 x. B ) = ( B x. 0 ) ) | 
						
							| 8 | 4 7 | syl |  |-  ( B e. NN -> ( 0 x. B ) = ( B x. 0 ) ) | 
						
							| 9 |  | oveq1 |  |-  ( A = 0 -> ( A x. B ) = ( 0 x. B ) ) | 
						
							| 10 |  | oveq2 |  |-  ( A = 0 -> ( B x. A ) = ( B x. 0 ) ) | 
						
							| 11 | 9 10 | eqeq12d |  |-  ( A = 0 -> ( ( A x. B ) = ( B x. A ) <-> ( 0 x. B ) = ( B x. 0 ) ) ) | 
						
							| 12 | 8 11 | syl5ibrcom |  |-  ( B e. NN -> ( A = 0 -> ( A x. B ) = ( B x. A ) ) ) | 
						
							| 13 | 12 | impcom |  |-  ( ( A = 0 /\ B e. NN ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 14 | 3 13 | jaoian |  |-  ( ( ( A e. NN \/ A = 0 ) /\ B e. NN ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 15 | 2 14 | sylanb |  |-  ( ( A e. NN0 /\ B e. NN ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 16 |  | nn0re |  |-  ( A e. NN0 -> A e. RR ) | 
						
							| 17 |  | remul01 |  |-  ( A e. RR -> ( A x. 0 ) = 0 ) | 
						
							| 18 |  | remul02 |  |-  ( A e. RR -> ( 0 x. A ) = 0 ) | 
						
							| 19 | 17 18 | eqtr4d |  |-  ( A e. RR -> ( A x. 0 ) = ( 0 x. A ) ) | 
						
							| 20 | 16 19 | syl |  |-  ( A e. NN0 -> ( A x. 0 ) = ( 0 x. A ) ) | 
						
							| 21 |  | oveq2 |  |-  ( B = 0 -> ( A x. B ) = ( A x. 0 ) ) | 
						
							| 22 |  | oveq1 |  |-  ( B = 0 -> ( B x. A ) = ( 0 x. A ) ) | 
						
							| 23 | 21 22 | eqeq12d |  |-  ( B = 0 -> ( ( A x. B ) = ( B x. A ) <-> ( A x. 0 ) = ( 0 x. A ) ) ) | 
						
							| 24 | 20 23 | syl5ibrcom |  |-  ( A e. NN0 -> ( B = 0 -> ( A x. B ) = ( B x. A ) ) ) | 
						
							| 25 | 24 | imp |  |-  ( ( A e. NN0 /\ B = 0 ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 26 | 15 25 | jaodan |  |-  ( ( A e. NN0 /\ ( B e. NN \/ B = 0 ) ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 27 | 1 26 | sylan2b |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A x. B ) = ( B x. A ) ) |