| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 |  |-  ( B e. NN0 <-> ( B e. NN \/ B = 0 ) ) | 
						
							| 2 |  | renegneg |  |-  ( A e. RR -> ( 0 -R ( 0 -R A ) ) = A ) | 
						
							| 3 | 2 | oveq1d |  |-  ( A e. RR -> ( ( 0 -R ( 0 -R A ) ) x. B ) = ( A x. B ) ) | 
						
							| 4 | 3 | ad2antrr |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> ( ( 0 -R ( 0 -R A ) ) x. B ) = ( A x. B ) ) | 
						
							| 5 |  | rernegcl |  |-  ( A e. RR -> ( 0 -R A ) e. RR ) | 
						
							| 6 | 5 | ad2antrr |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> ( 0 -R A ) e. RR ) | 
						
							| 7 |  | simpr |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> B e. NN ) | 
						
							| 8 | 6 7 | renegmulnnass |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> ( ( 0 -R ( 0 -R A ) ) x. B ) = ( 0 -R ( ( 0 -R A ) x. B ) ) ) | 
						
							| 9 |  | nnmulcom |  |-  ( ( ( 0 -R A ) e. NN /\ B e. NN ) -> ( ( 0 -R A ) x. B ) = ( B x. ( 0 -R A ) ) ) | 
						
							| 10 | 9 | adantll |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> ( ( 0 -R A ) x. B ) = ( B x. ( 0 -R A ) ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> ( 0 -R ( ( 0 -R A ) x. B ) ) = ( 0 -R ( B x. ( 0 -R A ) ) ) ) | 
						
							| 12 |  | nnre |  |-  ( B e. NN -> B e. RR ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> B e. RR ) | 
						
							| 14 |  | 0red |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> 0 e. RR ) | 
						
							| 15 |  | resubdi |  |-  ( ( B e. RR /\ 0 e. RR /\ ( 0 -R A ) e. RR ) -> ( B x. ( 0 -R ( 0 -R A ) ) ) = ( ( B x. 0 ) -R ( B x. ( 0 -R A ) ) ) ) | 
						
							| 16 | 13 14 6 15 | syl3anc |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> ( B x. ( 0 -R ( 0 -R A ) ) ) = ( ( B x. 0 ) -R ( B x. ( 0 -R A ) ) ) ) | 
						
							| 17 |  | remul01 |  |-  ( B e. RR -> ( B x. 0 ) = 0 ) | 
						
							| 18 | 12 17 | syl |  |-  ( B e. NN -> ( B x. 0 ) = 0 ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> ( B x. 0 ) = 0 ) | 
						
							| 20 | 19 | oveq1d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> ( ( B x. 0 ) -R ( B x. ( 0 -R A ) ) ) = ( 0 -R ( B x. ( 0 -R A ) ) ) ) | 
						
							| 21 | 16 20 | eqtrd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> ( B x. ( 0 -R ( 0 -R A ) ) ) = ( 0 -R ( B x. ( 0 -R A ) ) ) ) | 
						
							| 22 | 2 | ad2antrr |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> ( 0 -R ( 0 -R A ) ) = A ) | 
						
							| 23 | 22 | oveq2d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> ( B x. ( 0 -R ( 0 -R A ) ) ) = ( B x. A ) ) | 
						
							| 24 | 11 21 23 | 3eqtr2d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> ( 0 -R ( ( 0 -R A ) x. B ) ) = ( B x. A ) ) | 
						
							| 25 | 8 4 24 | 3eqtr3d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 26 | 4 4 25 | 3eqtr3d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 27 |  | remul01 |  |-  ( A e. RR -> ( A x. 0 ) = 0 ) | 
						
							| 28 |  | remul02 |  |-  ( A e. RR -> ( 0 x. A ) = 0 ) | 
						
							| 29 | 27 28 | eqtr4d |  |-  ( A e. RR -> ( A x. 0 ) = ( 0 x. A ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( A e. RR /\ ( 0 -R A ) e. NN ) -> ( A x. 0 ) = ( 0 x. A ) ) | 
						
							| 31 |  | oveq2 |  |-  ( B = 0 -> ( A x. B ) = ( A x. 0 ) ) | 
						
							| 32 |  | oveq1 |  |-  ( B = 0 -> ( B x. A ) = ( 0 x. A ) ) | 
						
							| 33 | 31 32 | eqeq12d |  |-  ( B = 0 -> ( ( A x. B ) = ( B x. A ) <-> ( A x. 0 ) = ( 0 x. A ) ) ) | 
						
							| 34 | 30 33 | syl5ibrcom |  |-  ( ( A e. RR /\ ( 0 -R A ) e. NN ) -> ( B = 0 -> ( A x. B ) = ( B x. A ) ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B = 0 ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 36 | 26 35 | jaodan |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. NN \/ B = 0 ) ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 37 | 1 36 | sylan2b |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( A x. B ) = ( B x. A ) ) |