| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reelznn0nn |  |-  ( A e. ZZ <-> ( A e. NN0 \/ ( A e. RR /\ ( 0 -R A ) e. NN ) ) ) | 
						
							| 2 |  | reelznn0nn |  |-  ( B e. ZZ <-> ( B e. NN0 \/ ( B e. RR /\ ( 0 -R B ) e. NN ) ) ) | 
						
							| 3 |  | nn0mulcom |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 4 |  | zmulcomlem |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 5 |  | zmulcomlem |  |-  ( ( ( B e. RR /\ ( 0 -R B ) e. NN ) /\ A e. NN0 ) -> ( B x. A ) = ( A x. B ) ) | 
						
							| 6 | 5 | eqcomd |  |-  ( ( ( B e. RR /\ ( 0 -R B ) e. NN ) /\ A e. NN0 ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 7 | 6 | ancoms |  |-  ( ( A e. NN0 /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 8 |  | nnmulcom |  |-  ( ( ( 0 -R A ) e. NN /\ ( 0 -R B ) e. NN ) -> ( ( 0 -R A ) x. ( 0 -R B ) ) = ( ( 0 -R B ) x. ( 0 -R A ) ) ) | 
						
							| 9 | 8 | ad2ant2l |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R A ) x. ( 0 -R B ) ) = ( ( 0 -R B ) x. ( 0 -R A ) ) ) | 
						
							| 10 | 9 | oveq2d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( 0 -R ( ( 0 -R A ) x. ( 0 -R B ) ) ) = ( 0 -R ( ( 0 -R B ) x. ( 0 -R A ) ) ) ) | 
						
							| 11 |  | rernegcl |  |-  ( A e. RR -> ( 0 -R A ) e. RR ) | 
						
							| 12 | 11 | ad2antrr |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( 0 -R A ) e. RR ) | 
						
							| 13 |  | simprr |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( 0 -R B ) e. NN ) | 
						
							| 14 | 12 13 | renegmulnnass |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R ( 0 -R A ) ) x. ( 0 -R B ) ) = ( 0 -R ( ( 0 -R A ) x. ( 0 -R B ) ) ) ) | 
						
							| 15 |  | rernegcl |  |-  ( B e. RR -> ( 0 -R B ) e. RR ) | 
						
							| 16 | 15 | ad2antrl |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( 0 -R B ) e. RR ) | 
						
							| 17 |  | simplr |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( 0 -R A ) e. NN ) | 
						
							| 18 | 16 17 | renegmulnnass |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R ( 0 -R B ) ) x. ( 0 -R A ) ) = ( 0 -R ( ( 0 -R B ) x. ( 0 -R A ) ) ) ) | 
						
							| 19 | 10 14 18 | 3eqtr4d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R ( 0 -R A ) ) x. ( 0 -R B ) ) = ( ( 0 -R ( 0 -R B ) ) x. ( 0 -R A ) ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( 0 -R ( ( 0 -R ( 0 -R A ) ) x. ( 0 -R B ) ) ) = ( 0 -R ( ( 0 -R ( 0 -R B ) ) x. ( 0 -R A ) ) ) ) | 
						
							| 21 |  | rernegcl |  |-  ( ( 0 -R A ) e. RR -> ( 0 -R ( 0 -R A ) ) e. RR ) | 
						
							| 22 | 11 21 | syl |  |-  ( A e. RR -> ( 0 -R ( 0 -R A ) ) e. RR ) | 
						
							| 23 | 22 | ad2antrr |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( 0 -R ( 0 -R A ) ) e. RR ) | 
						
							| 24 | 23 16 | remulneg2d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R ( 0 -R A ) ) x. ( 0 -R ( 0 -R B ) ) ) = ( 0 -R ( ( 0 -R ( 0 -R A ) ) x. ( 0 -R B ) ) ) ) | 
						
							| 25 |  | rernegcl |  |-  ( ( 0 -R B ) e. RR -> ( 0 -R ( 0 -R B ) ) e. RR ) | 
						
							| 26 | 15 25 | syl |  |-  ( B e. RR -> ( 0 -R ( 0 -R B ) ) e. RR ) | 
						
							| 27 | 26 | ad2antrl |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( 0 -R ( 0 -R B ) ) e. RR ) | 
						
							| 28 | 27 12 | remulneg2d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R ( 0 -R B ) ) x. ( 0 -R ( 0 -R A ) ) ) = ( 0 -R ( ( 0 -R ( 0 -R B ) ) x. ( 0 -R A ) ) ) ) | 
						
							| 29 | 20 24 28 | 3eqtr4d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R ( 0 -R A ) ) x. ( 0 -R ( 0 -R B ) ) ) = ( ( 0 -R ( 0 -R B ) ) x. ( 0 -R ( 0 -R A ) ) ) ) | 
						
							| 30 |  | renegneg |  |-  ( A e. RR -> ( 0 -R ( 0 -R A ) ) = A ) | 
						
							| 31 | 30 | ad2antrr |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( 0 -R ( 0 -R A ) ) = A ) | 
						
							| 32 |  | renegneg |  |-  ( B e. RR -> ( 0 -R ( 0 -R B ) ) = B ) | 
						
							| 33 | 32 | ad2antrl |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( 0 -R ( 0 -R B ) ) = B ) | 
						
							| 34 | 31 33 | oveq12d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R ( 0 -R A ) ) x. ( 0 -R ( 0 -R B ) ) ) = ( A x. B ) ) | 
						
							| 35 | 33 31 | oveq12d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( ( 0 -R ( 0 -R B ) ) x. ( 0 -R ( 0 -R A ) ) ) = ( B x. A ) ) | 
						
							| 36 | 29 34 35 | 3eqtr3d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ ( B e. RR /\ ( 0 -R B ) e. NN ) ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 37 | 3 4 7 36 | ccase |  |-  ( ( ( A e. NN0 \/ ( A e. RR /\ ( 0 -R A ) e. NN ) ) /\ ( B e. NN0 \/ ( B e. RR /\ ( 0 -R B ) e. NN ) ) ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 38 | 1 2 37 | syl2anb |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A x. B ) = ( B x. A ) ) |