| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 | ⊢ ( 𝐵  ∈  ℕ0  ↔  ( 𝐵  ∈  ℕ  ∨  𝐵  =  0 ) ) | 
						
							| 2 |  | renegneg | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  −ℝ  ( 0  −ℝ  𝐴 ) )  =  𝐴 ) | 
						
							| 3 | 2 | oveq1d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 0  −ℝ  ( 0  −ℝ  𝐴 ) )  ·  𝐵 )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  ( ( 0  −ℝ  ( 0  −ℝ  𝐴 ) )  ·  𝐵 )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 5 |  | rernegcl | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  −ℝ  𝐴 )  ∈  ℝ ) | 
						
							| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  ( 0  −ℝ  𝐴 )  ∈  ℝ ) | 
						
							| 7 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  𝐵  ∈  ℕ ) | 
						
							| 8 | 6 7 | renegmulnnass | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  ( ( 0  −ℝ  ( 0  −ℝ  𝐴 ) )  ·  𝐵 )  =  ( 0  −ℝ  ( ( 0  −ℝ  𝐴 )  ·  𝐵 ) ) ) | 
						
							| 9 |  | nnmulcom | ⊢ ( ( ( 0  −ℝ  𝐴 )  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( 0  −ℝ  𝐴 )  ·  𝐵 )  =  ( 𝐵  ·  ( 0  −ℝ  𝐴 ) ) ) | 
						
							| 10 | 9 | adantll | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  ( ( 0  −ℝ  𝐴 )  ·  𝐵 )  =  ( 𝐵  ·  ( 0  −ℝ  𝐴 ) ) ) | 
						
							| 11 | 10 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  ( 0  −ℝ  ( ( 0  −ℝ  𝐴 )  ·  𝐵 ) )  =  ( 0  −ℝ  ( 𝐵  ·  ( 0  −ℝ  𝐴 ) ) ) ) | 
						
							| 12 |  | nnre | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  𝐵  ∈  ℝ ) | 
						
							| 14 |  | 0red | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  0  ∈  ℝ ) | 
						
							| 15 |  | resubdi | ⊢ ( ( 𝐵  ∈  ℝ  ∧  0  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℝ )  →  ( 𝐵  ·  ( 0  −ℝ  ( 0  −ℝ  𝐴 ) ) )  =  ( ( 𝐵  ·  0 )  −ℝ  ( 𝐵  ·  ( 0  −ℝ  𝐴 ) ) ) ) | 
						
							| 16 | 13 14 6 15 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  ( 𝐵  ·  ( 0  −ℝ  ( 0  −ℝ  𝐴 ) ) )  =  ( ( 𝐵  ·  0 )  −ℝ  ( 𝐵  ·  ( 0  −ℝ  𝐴 ) ) ) ) | 
						
							| 17 |  | remul01 | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝐵  ·  0 )  =  0 ) | 
						
							| 18 | 12 17 | syl | ⊢ ( 𝐵  ∈  ℕ  →  ( 𝐵  ·  0 )  =  0 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  ( 𝐵  ·  0 )  =  0 ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  ( ( 𝐵  ·  0 )  −ℝ  ( 𝐵  ·  ( 0  −ℝ  𝐴 ) ) )  =  ( 0  −ℝ  ( 𝐵  ·  ( 0  −ℝ  𝐴 ) ) ) ) | 
						
							| 21 | 16 20 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  ( 𝐵  ·  ( 0  −ℝ  ( 0  −ℝ  𝐴 ) ) )  =  ( 0  −ℝ  ( 𝐵  ·  ( 0  −ℝ  𝐴 ) ) ) ) | 
						
							| 22 | 2 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  ( 0  −ℝ  ( 0  −ℝ  𝐴 ) )  =  𝐴 ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  ( 𝐵  ·  ( 0  −ℝ  ( 0  −ℝ  𝐴 ) ) )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 24 | 11 21 23 | 3eqtr2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  ( 0  −ℝ  ( ( 0  −ℝ  𝐴 )  ·  𝐵 ) )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 25 | 8 4 24 | 3eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 26 | 4 4 25 | 3eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 27 |  | remul01 | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  ·  0 )  =  0 ) | 
						
							| 28 |  | remul02 | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ·  𝐴 )  =  0 ) | 
						
							| 29 | 27 28 | eqtr4d | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  ·  0 )  =  ( 0  ·  𝐴 ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  →  ( 𝐴  ·  0 )  =  ( 0  ·  𝐴 ) ) | 
						
							| 31 |  | oveq2 | ⊢ ( 𝐵  =  0  →  ( 𝐴  ·  𝐵 )  =  ( 𝐴  ·  0 ) ) | 
						
							| 32 |  | oveq1 | ⊢ ( 𝐵  =  0  →  ( 𝐵  ·  𝐴 )  =  ( 0  ·  𝐴 ) ) | 
						
							| 33 | 31 32 | eqeq12d | ⊢ ( 𝐵  =  0  →  ( ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 )  ↔  ( 𝐴  ·  0 )  =  ( 0  ·  𝐴 ) ) ) | 
						
							| 34 | 30 33 | syl5ibrcom | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  →  ( 𝐵  =  0  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) ) | 
						
							| 35 | 34 | imp | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  =  0 )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 36 | 26 35 | jaodan | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  ( 𝐵  ∈  ℕ  ∨  𝐵  =  0 ) )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 37 | 1 36 | sylan2b | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 0  −ℝ  𝐴 )  ∈  ℕ )  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) |