| Step | Hyp | Ref | Expression | 
						
							| 1 |  | renegmulnnass.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | renegmulnnass.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑥  =  1  →  ( ( 0  −ℝ  𝐴 )  ·  𝑥 )  =  ( ( 0  −ℝ  𝐴 )  ·  1 ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑥  =  1  →  ( 𝐴  ·  𝑥 )  =  ( 𝐴  ·  1 ) ) | 
						
							| 5 | 4 | oveq2d | ⊢ ( 𝑥  =  1  →  ( 0  −ℝ  ( 𝐴  ·  𝑥 ) )  =  ( 0  −ℝ  ( 𝐴  ·  1 ) ) ) | 
						
							| 6 | 3 5 | eqeq12d | ⊢ ( 𝑥  =  1  →  ( ( ( 0  −ℝ  𝐴 )  ·  𝑥 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑥 ) )  ↔  ( ( 0  −ℝ  𝐴 )  ·  1 )  =  ( 0  −ℝ  ( 𝐴  ·  1 ) ) ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 0  −ℝ  𝐴 )  ·  𝑥 )  =  ( ( 0  −ℝ  𝐴 )  ·  𝑦 ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ·  𝑥 )  =  ( 𝐴  ·  𝑦 ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝑥  =  𝑦  →  ( 0  −ℝ  ( 𝐴  ·  𝑥 ) )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) ) | 
						
							| 10 | 7 9 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 0  −ℝ  𝐴 )  ·  𝑥 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑥 ) )  ↔  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( 0  −ℝ  𝐴 )  ·  𝑥 )  =  ( ( 0  −ℝ  𝐴 )  ·  ( 𝑦  +  1 ) ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝐴  ·  𝑥 )  =  ( 𝐴  ·  ( 𝑦  +  1 ) ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 0  −ℝ  ( 𝐴  ·  𝑥 ) )  =  ( 0  −ℝ  ( 𝐴  ·  ( 𝑦  +  1 ) ) ) ) | 
						
							| 14 | 11 13 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( ( 0  −ℝ  𝐴 )  ·  𝑥 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑥 ) )  ↔  ( ( 0  −ℝ  𝐴 )  ·  ( 𝑦  +  1 ) )  =  ( 0  −ℝ  ( 𝐴  ·  ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑥  =  𝑁  →  ( ( 0  −ℝ  𝐴 )  ·  𝑥 )  =  ( ( 0  −ℝ  𝐴 )  ·  𝑁 ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑥  =  𝑁  →  ( 𝐴  ·  𝑥 )  =  ( 𝐴  ·  𝑁 ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑥  =  𝑁  →  ( 0  −ℝ  ( 𝐴  ·  𝑥 ) )  =  ( 0  −ℝ  ( 𝐴  ·  𝑁 ) ) ) | 
						
							| 18 | 15 17 | eqeq12d | ⊢ ( 𝑥  =  𝑁  →  ( ( ( 0  −ℝ  𝐴 )  ·  𝑥 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑥 ) )  ↔  ( ( 0  −ℝ  𝐴 )  ·  𝑁 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑁 ) ) ) ) | 
						
							| 19 |  | rernegcl | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  −ℝ  𝐴 )  ∈  ℝ ) | 
						
							| 20 | 1 19 | syl | ⊢ ( 𝜑  →  ( 0  −ℝ  𝐴 )  ∈  ℝ ) | 
						
							| 21 |  | ax-1rid | ⊢ ( ( 0  −ℝ  𝐴 )  ∈  ℝ  →  ( ( 0  −ℝ  𝐴 )  ·  1 )  =  ( 0  −ℝ  𝐴 ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝜑  →  ( ( 0  −ℝ  𝐴 )  ·  1 )  =  ( 0  −ℝ  𝐴 ) ) | 
						
							| 23 |  | ax-1rid | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  ·  1 )  =  𝐴 ) | 
						
							| 24 | 1 23 | syl | ⊢ ( 𝜑  →  ( 𝐴  ·  1 )  =  𝐴 ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( 𝜑  →  ( 0  −ℝ  ( 𝐴  ·  1 ) )  =  ( 0  −ℝ  𝐴 ) ) | 
						
							| 26 | 22 25 | eqtr4d | ⊢ ( 𝜑  →  ( ( 0  −ℝ  𝐴 )  ·  1 )  =  ( 0  −ℝ  ( 𝐴  ·  1 ) ) ) | 
						
							| 27 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) ) | 
						
							| 28 | 27 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( ( 0  −ℝ  𝐴 )  +  ( ( 0  −ℝ  𝐴 )  ·  𝑦 ) )  =  ( ( 0  −ℝ  𝐴 )  +  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) ) ) | 
						
							| 29 |  | 0red | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  0  ∈  ℝ ) | 
						
							| 30 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 31 |  | nnre | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℝ ) | 
						
							| 32 | 31 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 33 | 30 32 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( 𝐴  ·  𝑦 )  ∈  ℝ ) | 
						
							| 34 |  | rernegcl | ⊢ ( ( 𝐴  ·  𝑦 )  ∈  ℝ  →  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) )  ∈  ℝ ) | 
						
							| 35 | 33 34 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) )  ∈  ℝ ) | 
						
							| 36 |  | readdsub | ⊢ ( ( 0  ∈  ℝ  ∧  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) )  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( 0  +  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  −ℝ  𝐴 )  =  ( ( 0  −ℝ  𝐴 )  +  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) ) ) | 
						
							| 37 | 29 35 30 36 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( ( 0  +  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  −ℝ  𝐴 )  =  ( ( 0  −ℝ  𝐴 )  +  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) ) ) | 
						
							| 38 |  | readdlid | ⊢ ( ( 0  −ℝ  ( 𝐴  ·  𝑦 ) )  ∈  ℝ  →  ( 0  +  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) ) | 
						
							| 39 | 35 38 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( 0  +  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) ) | 
						
							| 40 | 39 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( ( 0  +  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  −ℝ  𝐴 )  =  ( ( 0  −ℝ  ( 𝐴  ·  𝑦 ) )  −ℝ  𝐴 ) ) | 
						
							| 41 | 37 40 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( ( 0  −ℝ  𝐴 )  +  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  =  ( ( 0  −ℝ  ( 𝐴  ·  𝑦 ) )  −ℝ  𝐴 ) ) | 
						
							| 42 |  | resubsub4 | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝐴  ·  𝑦 )  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( 0  −ℝ  ( 𝐴  ·  𝑦 ) )  −ℝ  𝐴 )  =  ( 0  −ℝ  ( ( 𝐴  ·  𝑦 )  +  𝐴 ) ) ) | 
						
							| 43 | 29 33 30 42 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( ( 0  −ℝ  ( 𝐴  ·  𝑦 ) )  −ℝ  𝐴 )  =  ( 0  −ℝ  ( ( 𝐴  ·  𝑦 )  +  𝐴 ) ) ) | 
						
							| 44 | 28 41 43 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( ( 0  −ℝ  𝐴 )  +  ( ( 0  −ℝ  𝐴 )  ·  𝑦 ) )  =  ( 0  −ℝ  ( ( 𝐴  ·  𝑦 )  +  𝐴 ) ) ) | 
						
							| 45 | 22 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 0  −ℝ  𝐴 )  ·  1 )  +  ( ( 0  −ℝ  𝐴 )  ·  𝑦 ) )  =  ( ( 0  −ℝ  𝐴 )  +  ( ( 0  −ℝ  𝐴 )  ·  𝑦 ) ) ) | 
						
							| 46 | 45 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( ( ( 0  −ℝ  𝐴 )  ·  1 )  +  ( ( 0  −ℝ  𝐴 )  ·  𝑦 ) )  =  ( ( 0  −ℝ  𝐴 )  +  ( ( 0  −ℝ  𝐴 )  ·  𝑦 ) ) ) | 
						
							| 47 | 24 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝑦 )  +  ( 𝐴  ·  1 ) )  =  ( ( 𝐴  ·  𝑦 )  +  𝐴 ) ) | 
						
							| 48 | 47 | oveq2d | ⊢ ( 𝜑  →  ( 0  −ℝ  ( ( 𝐴  ·  𝑦 )  +  ( 𝐴  ·  1 ) ) )  =  ( 0  −ℝ  ( ( 𝐴  ·  𝑦 )  +  𝐴 ) ) ) | 
						
							| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( 0  −ℝ  ( ( 𝐴  ·  𝑦 )  +  ( 𝐴  ·  1 ) ) )  =  ( 0  −ℝ  ( ( 𝐴  ·  𝑦 )  +  𝐴 ) ) ) | 
						
							| 50 | 44 46 49 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( ( ( 0  −ℝ  𝐴 )  ·  1 )  +  ( ( 0  −ℝ  𝐴 )  ·  𝑦 ) )  =  ( 0  −ℝ  ( ( 𝐴  ·  𝑦 )  +  ( 𝐴  ·  1 ) ) ) ) | 
						
							| 51 |  | nnadd1com | ⊢ ( 𝑦  ∈  ℕ  →  ( 𝑦  +  1 )  =  ( 1  +  𝑦 ) ) | 
						
							| 52 | 51 | oveq2d | ⊢ ( 𝑦  ∈  ℕ  →  ( ( 0  −ℝ  𝐴 )  ·  ( 𝑦  +  1 ) )  =  ( ( 0  −ℝ  𝐴 )  ·  ( 1  +  𝑦 ) ) ) | 
						
							| 53 | 52 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( ( 0  −ℝ  𝐴 )  ·  ( 𝑦  +  1 ) )  =  ( ( 0  −ℝ  𝐴 )  ·  ( 1  +  𝑦 ) ) ) | 
						
							| 54 | 20 | recnd | ⊢ ( 𝜑  →  ( 0  −ℝ  𝐴 )  ∈  ℂ ) | 
						
							| 55 | 54 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( 0  −ℝ  𝐴 )  ∈  ℂ ) | 
						
							| 56 |  | 1cnd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  1  ∈  ℂ ) | 
						
							| 57 |  | nncn | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℂ ) | 
						
							| 58 | 57 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  𝑦  ∈  ℂ ) | 
						
							| 59 | 55 56 58 | adddid | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( ( 0  −ℝ  𝐴 )  ·  ( 1  +  𝑦 ) )  =  ( ( ( 0  −ℝ  𝐴 )  ·  1 )  +  ( ( 0  −ℝ  𝐴 )  ·  𝑦 ) ) ) | 
						
							| 60 | 53 59 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( ( 0  −ℝ  𝐴 )  ·  ( 𝑦  +  1 ) )  =  ( ( ( 0  −ℝ  𝐴 )  ·  1 )  +  ( ( 0  −ℝ  𝐴 )  ·  𝑦 ) ) ) | 
						
							| 61 | 1 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 62 | 61 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 63 | 62 58 56 | adddid | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( 𝐴  ·  ( 𝑦  +  1 ) )  =  ( ( 𝐴  ·  𝑦 )  +  ( 𝐴  ·  1 ) ) ) | 
						
							| 64 | 63 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( 0  −ℝ  ( 𝐴  ·  ( 𝑦  +  1 ) ) )  =  ( 0  −ℝ  ( ( 𝐴  ·  𝑦 )  +  ( 𝐴  ·  1 ) ) ) ) | 
						
							| 65 | 50 60 64 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  ( ( 0  −ℝ  𝐴 )  ·  𝑦 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑦 ) ) )  →  ( ( 0  −ℝ  𝐴 )  ·  ( 𝑦  +  1 ) )  =  ( 0  −ℝ  ( 𝐴  ·  ( 𝑦  +  1 ) ) ) ) | 
						
							| 66 | 6 10 14 18 26 65 | nnindd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( ( 0  −ℝ  𝐴 )  ·  𝑁 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑁 ) ) ) | 
						
							| 67 | 2 66 | mpdan | ⊢ ( 𝜑  →  ( ( 0  −ℝ  𝐴 )  ·  𝑁 )  =  ( 0  −ℝ  ( 𝐴  ·  𝑁 ) ) ) |