| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 | ⊢ ( 𝐵  ∈  ℕ0  ↔  ( 𝐵  ∈  ℕ  ∨  𝐵  =  0 ) ) | 
						
							| 2 |  | elnn0 | ⊢ ( 𝐴  ∈  ℕ0  ↔  ( 𝐴  ∈  ℕ  ∨  𝐴  =  0 ) ) | 
						
							| 3 |  | nnmulcom | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 4 |  | nnre | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | remul02 | ⊢ ( 𝐵  ∈  ℝ  →  ( 0  ·  𝐵 )  =  0 ) | 
						
							| 6 |  | remul01 | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝐵  ·  0 )  =  0 ) | 
						
							| 7 | 5 6 | eqtr4d | ⊢ ( 𝐵  ∈  ℝ  →  ( 0  ·  𝐵 )  =  ( 𝐵  ·  0 ) ) | 
						
							| 8 | 4 7 | syl | ⊢ ( 𝐵  ∈  ℕ  →  ( 0  ·  𝐵 )  =  ( 𝐵  ·  0 ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝐴  =  0  →  ( 𝐴  ·  𝐵 )  =  ( 0  ·  𝐵 ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝐴  =  0  →  ( 𝐵  ·  𝐴 )  =  ( 𝐵  ·  0 ) ) | 
						
							| 11 | 9 10 | eqeq12d | ⊢ ( 𝐴  =  0  →  ( ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 )  ↔  ( 0  ·  𝐵 )  =  ( 𝐵  ·  0 ) ) ) | 
						
							| 12 | 8 11 | syl5ibrcom | ⊢ ( 𝐵  ∈  ℕ  →  ( 𝐴  =  0  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) ) | 
						
							| 13 | 12 | impcom | ⊢ ( ( 𝐴  =  0  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 14 | 3 13 | jaoian | ⊢ ( ( ( 𝐴  ∈  ℕ  ∨  𝐴  =  0 )  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 15 | 2 14 | sylanb | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 16 |  | nn0re | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℝ ) | 
						
							| 17 |  | remul01 | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  ·  0 )  =  0 ) | 
						
							| 18 |  | remul02 | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ·  𝐴 )  =  0 ) | 
						
							| 19 | 17 18 | eqtr4d | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  ·  0 )  =  ( 0  ·  𝐴 ) ) | 
						
							| 20 | 16 19 | syl | ⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴  ·  0 )  =  ( 0  ·  𝐴 ) ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝐵  =  0  →  ( 𝐴  ·  𝐵 )  =  ( 𝐴  ·  0 ) ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝐵  =  0  →  ( 𝐵  ·  𝐴 )  =  ( 0  ·  𝐴 ) ) | 
						
							| 23 | 21 22 | eqeq12d | ⊢ ( 𝐵  =  0  →  ( ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 )  ↔  ( 𝐴  ·  0 )  =  ( 0  ·  𝐴 ) ) ) | 
						
							| 24 | 20 23 | syl5ibrcom | ⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐵  =  0  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) ) | 
						
							| 25 | 24 | imp | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  =  0 )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 26 | 15 25 | jaodan | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  ( 𝐵  ∈  ℕ  ∨  𝐵  =  0 ) )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 27 | 1 26 | sylan2b | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) |