| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 |  | 
						
							| 2 |  | renegneg |  | 
						
							| 3 | 2 | oveq1d |  | 
						
							| 4 | 3 | ad2antrr |  | 
						
							| 5 |  | rernegcl |  | 
						
							| 6 | 5 | ad2antrr |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 | 6 7 | renegmulnnass |  | 
						
							| 9 |  | nnmulcom |  | 
						
							| 10 | 9 | adantll |  | 
						
							| 11 | 10 | oveq2d |  | 
						
							| 12 |  | nnre |  | 
						
							| 13 | 12 | adantl |  | 
						
							| 14 |  | 0red |  | 
						
							| 15 |  | resubdi |  | 
						
							| 16 | 13 14 6 15 | syl3anc |  | 
						
							| 17 |  | remul01 |  | 
						
							| 18 | 12 17 | syl |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 | 19 | oveq1d |  | 
						
							| 21 | 16 20 | eqtrd |  | 
						
							| 22 | 2 | ad2antrr |  | 
						
							| 23 | 22 | oveq2d |  | 
						
							| 24 | 11 21 23 | 3eqtr2d |  | 
						
							| 25 | 8 4 24 | 3eqtr3d |  | 
						
							| 26 | 4 4 25 | 3eqtr3d |  | 
						
							| 27 |  | remul01 |  | 
						
							| 28 |  | remul02 |  | 
						
							| 29 | 27 28 | eqtr4d |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 |  | oveq2 |  | 
						
							| 32 |  | oveq1 |  | 
						
							| 33 | 31 32 | eqeq12d |  | 
						
							| 34 | 30 33 | syl5ibrcom |  | 
						
							| 35 | 34 | imp |  | 
						
							| 36 | 26 35 | jaodan |  | 
						
							| 37 | 1 36 | sylan2b |  |