| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|
| 2 |
|
renegneg |
|
| 3 |
2
|
oveq1d |
|
| 4 |
3
|
ad2antrr |
|
| 5 |
|
rernegcl |
|
| 6 |
5
|
ad2antrr |
|
| 7 |
|
simpr |
|
| 8 |
6 7
|
renegmulnnass |
|
| 9 |
|
nnmulcom |
|
| 10 |
9
|
adantll |
|
| 11 |
10
|
oveq2d |
|
| 12 |
|
nnre |
|
| 13 |
12
|
adantl |
|
| 14 |
|
0red |
|
| 15 |
|
resubdi |
|
| 16 |
13 14 6 15
|
syl3anc |
|
| 17 |
|
remul01 |
|
| 18 |
12 17
|
syl |
|
| 19 |
18
|
adantl |
|
| 20 |
19
|
oveq1d |
|
| 21 |
16 20
|
eqtrd |
|
| 22 |
2
|
ad2antrr |
|
| 23 |
22
|
oveq2d |
|
| 24 |
11 21 23
|
3eqtr2d |
|
| 25 |
8 4 24
|
3eqtr3d |
|
| 26 |
4 4 25
|
3eqtr3d |
|
| 27 |
|
remul01 |
|
| 28 |
|
remul02 |
|
| 29 |
27 28
|
eqtr4d |
|
| 30 |
29
|
adantr |
|
| 31 |
|
oveq2 |
|
| 32 |
|
oveq1 |
|
| 33 |
31 32
|
eqeq12d |
|
| 34 |
30 33
|
syl5ibrcom |
|
| 35 |
34
|
imp |
|
| 36 |
26 35
|
jaodan |
|
| 37 |
1 36
|
sylan2b |
|