| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> B e. NN0 ) |
| 2 |
1
|
nn0cnd |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> B e. CC ) |
| 3 |
|
rernegcl |
|- ( A e. RR -> ( 0 -R A ) e. RR ) |
| 4 |
3
|
ad2antrr |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( 0 -R A ) e. RR ) |
| 5 |
4
|
recnd |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( 0 -R A ) e. CC ) |
| 6 |
|
simpll |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> A e. RR ) |
| 7 |
6
|
recnd |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> A e. CC ) |
| 8 |
2 5 7
|
addassd |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( B + ( 0 -R A ) ) + A ) = ( B + ( ( 0 -R A ) + A ) ) ) |
| 9 |
|
renegid2 |
|- ( A e. RR -> ( ( 0 -R A ) + A ) = 0 ) |
| 10 |
9
|
ad2antrr |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( 0 -R A ) + A ) = 0 ) |
| 11 |
10
|
oveq2d |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( B + ( ( 0 -R A ) + A ) ) = ( B + 0 ) ) |
| 12 |
|
nn0re |
|- ( B e. NN0 -> B e. RR ) |
| 13 |
|
readdrid |
|- ( B e. RR -> ( B + 0 ) = B ) |
| 14 |
12 13
|
syl |
|- ( B e. NN0 -> ( B + 0 ) = B ) |
| 15 |
14
|
adantl |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( B + 0 ) = B ) |
| 16 |
8 11 15
|
3eqtrrd |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> B = ( ( B + ( 0 -R A ) ) + A ) ) |
| 17 |
9
|
oveq1d |
|- ( A e. RR -> ( ( ( 0 -R A ) + A ) + B ) = ( 0 + B ) ) |
| 18 |
17
|
adantr |
|- ( ( A e. RR /\ ( 0 -R A ) e. NN ) -> ( ( ( 0 -R A ) + A ) + B ) = ( 0 + B ) ) |
| 19 |
|
readdlid |
|- ( B e. RR -> ( 0 + B ) = B ) |
| 20 |
12 19
|
syl |
|- ( B e. NN0 -> ( 0 + B ) = B ) |
| 21 |
18 20
|
sylan9eq |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( ( 0 -R A ) + A ) + B ) = B ) |
| 22 |
|
nnnn0 |
|- ( ( 0 -R A ) e. NN -> ( 0 -R A ) e. NN0 ) |
| 23 |
|
nn0addcom |
|- ( ( ( 0 -R A ) e. NN0 /\ B e. NN0 ) -> ( ( 0 -R A ) + B ) = ( B + ( 0 -R A ) ) ) |
| 24 |
22 23
|
sylan |
|- ( ( ( 0 -R A ) e. NN /\ B e. NN0 ) -> ( ( 0 -R A ) + B ) = ( B + ( 0 -R A ) ) ) |
| 25 |
24
|
adantll |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( 0 -R A ) + B ) = ( B + ( 0 -R A ) ) ) |
| 26 |
25
|
oveq1d |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( ( 0 -R A ) + B ) + A ) = ( ( B + ( 0 -R A ) ) + A ) ) |
| 27 |
16 21 26
|
3eqtr4d |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( ( 0 -R A ) + A ) + B ) = ( ( ( 0 -R A ) + B ) + A ) ) |
| 28 |
5 7 2
|
addassd |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( ( 0 -R A ) + A ) + B ) = ( ( 0 -R A ) + ( A + B ) ) ) |
| 29 |
5 2 7
|
addassd |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( ( 0 -R A ) + B ) + A ) = ( ( 0 -R A ) + ( B + A ) ) ) |
| 30 |
27 28 29
|
3eqtr3d |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( 0 -R A ) + ( A + B ) ) = ( ( 0 -R A ) + ( B + A ) ) ) |
| 31 |
7 2
|
addcld |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( A + B ) e. CC ) |
| 32 |
2 7
|
addcld |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( B + A ) e. CC ) |
| 33 |
5 31 32
|
sn-addcand |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( ( 0 -R A ) + ( A + B ) ) = ( ( 0 -R A ) + ( B + A ) ) <-> ( A + B ) = ( B + A ) ) ) |
| 34 |
30 33
|
mpbid |
|- ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( A + B ) = ( B + A ) ) |