| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> B e. NN0 ) | 
						
							| 2 | 1 | nn0cnd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> B e. CC ) | 
						
							| 3 |  | rernegcl |  |-  ( A e. RR -> ( 0 -R A ) e. RR ) | 
						
							| 4 | 3 | ad2antrr |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( 0 -R A ) e. RR ) | 
						
							| 5 | 4 | recnd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( 0 -R A ) e. CC ) | 
						
							| 6 |  | simpll |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> A e. RR ) | 
						
							| 7 | 6 | recnd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> A e. CC ) | 
						
							| 8 | 2 5 7 | addassd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( B + ( 0 -R A ) ) + A ) = ( B + ( ( 0 -R A ) + A ) ) ) | 
						
							| 9 |  | renegid2 |  |-  ( A e. RR -> ( ( 0 -R A ) + A ) = 0 ) | 
						
							| 10 | 9 | ad2antrr |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( 0 -R A ) + A ) = 0 ) | 
						
							| 11 | 10 | oveq2d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( B + ( ( 0 -R A ) + A ) ) = ( B + 0 ) ) | 
						
							| 12 |  | nn0re |  |-  ( B e. NN0 -> B e. RR ) | 
						
							| 13 |  | readdrid |  |-  ( B e. RR -> ( B + 0 ) = B ) | 
						
							| 14 | 12 13 | syl |  |-  ( B e. NN0 -> ( B + 0 ) = B ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( B + 0 ) = B ) | 
						
							| 16 | 8 11 15 | 3eqtrrd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> B = ( ( B + ( 0 -R A ) ) + A ) ) | 
						
							| 17 | 9 | oveq1d |  |-  ( A e. RR -> ( ( ( 0 -R A ) + A ) + B ) = ( 0 + B ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( A e. RR /\ ( 0 -R A ) e. NN ) -> ( ( ( 0 -R A ) + A ) + B ) = ( 0 + B ) ) | 
						
							| 19 |  | readdlid |  |-  ( B e. RR -> ( 0 + B ) = B ) | 
						
							| 20 | 12 19 | syl |  |-  ( B e. NN0 -> ( 0 + B ) = B ) | 
						
							| 21 | 18 20 | sylan9eq |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( ( 0 -R A ) + A ) + B ) = B ) | 
						
							| 22 |  | nnnn0 |  |-  ( ( 0 -R A ) e. NN -> ( 0 -R A ) e. NN0 ) | 
						
							| 23 |  | nn0addcom |  |-  ( ( ( 0 -R A ) e. NN0 /\ B e. NN0 ) -> ( ( 0 -R A ) + B ) = ( B + ( 0 -R A ) ) ) | 
						
							| 24 | 22 23 | sylan |  |-  ( ( ( 0 -R A ) e. NN /\ B e. NN0 ) -> ( ( 0 -R A ) + B ) = ( B + ( 0 -R A ) ) ) | 
						
							| 25 | 24 | adantll |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( 0 -R A ) + B ) = ( B + ( 0 -R A ) ) ) | 
						
							| 26 | 25 | oveq1d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( ( 0 -R A ) + B ) + A ) = ( ( B + ( 0 -R A ) ) + A ) ) | 
						
							| 27 | 16 21 26 | 3eqtr4d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( ( 0 -R A ) + A ) + B ) = ( ( ( 0 -R A ) + B ) + A ) ) | 
						
							| 28 | 5 7 2 | addassd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( ( 0 -R A ) + A ) + B ) = ( ( 0 -R A ) + ( A + B ) ) ) | 
						
							| 29 | 5 2 7 | addassd |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( ( 0 -R A ) + B ) + A ) = ( ( 0 -R A ) + ( B + A ) ) ) | 
						
							| 30 | 27 28 29 | 3eqtr3d |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( 0 -R A ) + ( A + B ) ) = ( ( 0 -R A ) + ( B + A ) ) ) | 
						
							| 31 | 7 2 | addcld |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( A + B ) e. CC ) | 
						
							| 32 | 2 7 | addcld |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( B + A ) e. CC ) | 
						
							| 33 | 5 31 32 | sn-addcand |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( ( ( 0 -R A ) + ( A + B ) ) = ( ( 0 -R A ) + ( B + A ) ) <-> ( A + B ) = ( B + A ) ) ) | 
						
							| 34 | 30 33 | mpbid |  |-  ( ( ( A e. RR /\ ( 0 -R A ) e. NN ) /\ B e. NN0 ) -> ( A + B ) = ( B + A ) ) |