| Step | Hyp | Ref | Expression | 
						
							| 1 |  | olc | ⊢ ( 𝑁  =  1  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) | 
						
							| 2 | 1 | a1d | ⊢ ( 𝑁  =  1  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑁  <  2 )  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 3 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 4 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 5 |  | zltlem1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( 𝑁  <  2  ↔  𝑁  ≤  ( 2  −  1 ) ) ) | 
						
							| 6 | 3 4 5 | sylancl | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  <  2  ↔  𝑁  ≤  ( 2  −  1 ) ) ) | 
						
							| 7 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 8 | 7 | breq2i | ⊢ ( 𝑁  ≤  ( 2  −  1 )  ↔  𝑁  ≤  1 ) | 
						
							| 9 | 6 8 | bitrdi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  <  2  ↔  𝑁  ≤  1 ) ) | 
						
							| 10 |  | necom | ⊢ ( 𝑁  ≠  1  ↔  1  ≠  𝑁 ) | 
						
							| 11 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 12 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 13 |  | ltlen | ⊢ ( ( 𝑁  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝑁  <  1  ↔  ( 𝑁  ≤  1  ∧  1  ≠  𝑁 ) ) ) | 
						
							| 14 | 11 12 13 | sylancl | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  <  1  ↔  ( 𝑁  ≤  1  ∧  1  ≠  𝑁 ) ) ) | 
						
							| 15 |  | nn0lt10b | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  <  1  ↔  𝑁  =  0 ) ) | 
						
							| 16 | 15 | biimpa | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑁  <  1 )  →  𝑁  =  0 ) | 
						
							| 17 | 16 | orcd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑁  <  1 )  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) | 
						
							| 18 | 17 | ex | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  <  1  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 19 | 14 18 | sylbird | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  ≤  1  ∧  1  ≠  𝑁 )  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 20 | 19 | expd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  ≤  1  →  ( 1  ≠  𝑁  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) ) | 
						
							| 21 | 10 20 | syl7bi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  ≤  1  →  ( 𝑁  ≠  1  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) ) | 
						
							| 22 | 9 21 | sylbid | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  <  2  →  ( 𝑁  ≠  1  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) ) | 
						
							| 23 | 22 | imp | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑁  <  2 )  →  ( 𝑁  ≠  1  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 24 | 23 | com12 | ⊢ ( 𝑁  ≠  1  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑁  <  2 )  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 25 | 2 24 | pm2.61ine | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑁  <  2 )  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) |