| Step | Hyp | Ref | Expression | 
						
							| 1 |  | olc |  |-  ( N = 1 -> ( N = 0 \/ N = 1 ) ) | 
						
							| 2 | 1 | a1d |  |-  ( N = 1 -> ( ( N e. NN0 /\ N < 2 ) -> ( N = 0 \/ N = 1 ) ) ) | 
						
							| 3 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 4 |  | 2z |  |-  2 e. ZZ | 
						
							| 5 |  | zltlem1 |  |-  ( ( N e. ZZ /\ 2 e. ZZ ) -> ( N < 2 <-> N <_ ( 2 - 1 ) ) ) | 
						
							| 6 | 3 4 5 | sylancl |  |-  ( N e. NN0 -> ( N < 2 <-> N <_ ( 2 - 1 ) ) ) | 
						
							| 7 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 8 | 7 | breq2i |  |-  ( N <_ ( 2 - 1 ) <-> N <_ 1 ) | 
						
							| 9 | 6 8 | bitrdi |  |-  ( N e. NN0 -> ( N < 2 <-> N <_ 1 ) ) | 
						
							| 10 |  | necom |  |-  ( N =/= 1 <-> 1 =/= N ) | 
						
							| 11 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 12 |  | 1re |  |-  1 e. RR | 
						
							| 13 |  | ltlen |  |-  ( ( N e. RR /\ 1 e. RR ) -> ( N < 1 <-> ( N <_ 1 /\ 1 =/= N ) ) ) | 
						
							| 14 | 11 12 13 | sylancl |  |-  ( N e. NN0 -> ( N < 1 <-> ( N <_ 1 /\ 1 =/= N ) ) ) | 
						
							| 15 |  | nn0lt10b |  |-  ( N e. NN0 -> ( N < 1 <-> N = 0 ) ) | 
						
							| 16 | 15 | biimpa |  |-  ( ( N e. NN0 /\ N < 1 ) -> N = 0 ) | 
						
							| 17 | 16 | orcd |  |-  ( ( N e. NN0 /\ N < 1 ) -> ( N = 0 \/ N = 1 ) ) | 
						
							| 18 | 17 | ex |  |-  ( N e. NN0 -> ( N < 1 -> ( N = 0 \/ N = 1 ) ) ) | 
						
							| 19 | 14 18 | sylbird |  |-  ( N e. NN0 -> ( ( N <_ 1 /\ 1 =/= N ) -> ( N = 0 \/ N = 1 ) ) ) | 
						
							| 20 | 19 | expd |  |-  ( N e. NN0 -> ( N <_ 1 -> ( 1 =/= N -> ( N = 0 \/ N = 1 ) ) ) ) | 
						
							| 21 | 10 20 | syl7bi |  |-  ( N e. NN0 -> ( N <_ 1 -> ( N =/= 1 -> ( N = 0 \/ N = 1 ) ) ) ) | 
						
							| 22 | 9 21 | sylbid |  |-  ( N e. NN0 -> ( N < 2 -> ( N =/= 1 -> ( N = 0 \/ N = 1 ) ) ) ) | 
						
							| 23 | 22 | imp |  |-  ( ( N e. NN0 /\ N < 2 ) -> ( N =/= 1 -> ( N = 0 \/ N = 1 ) ) ) | 
						
							| 24 | 23 | com12 |  |-  ( N =/= 1 -> ( ( N e. NN0 /\ N < 2 ) -> ( N = 0 \/ N = 1 ) ) ) | 
						
							| 25 | 2 24 | pm2.61ine |  |-  ( ( N e. NN0 /\ N < 2 ) -> ( N = 0 \/ N = 1 ) ) |