| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 2 |
|
elnnnn0c |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ) ) |
| 3 |
|
1red |
⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℝ ) |
| 4 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
| 5 |
3 4
|
leloed |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 ≤ 𝑁 ↔ ( 1 < 𝑁 ∨ 1 = 𝑁 ) ) ) |
| 6 |
|
1zzd |
⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℤ ) |
| 7 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 8 |
|
zltp1le |
⊢ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 1 < 𝑁 ↔ ( 1 + 1 ) ≤ 𝑁 ) ) |
| 9 |
6 7 8
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 < 𝑁 ↔ ( 1 + 1 ) ≤ 𝑁 ) ) |
| 10 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 11 |
10
|
breq1i |
⊢ ( ( 1 + 1 ) ≤ 𝑁 ↔ 2 ≤ 𝑁 ) |
| 12 |
11
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 1 + 1 ) ≤ 𝑁 ↔ 2 ≤ 𝑁 ) ) |
| 13 |
|
2re |
⊢ 2 ∈ ℝ |
| 14 |
13
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ ) |
| 15 |
14 4
|
leloed |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ≤ 𝑁 ↔ ( 2 < 𝑁 ∨ 2 = 𝑁 ) ) ) |
| 16 |
9 12 15
|
3bitrd |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 < 𝑁 ↔ ( 2 < 𝑁 ∨ 2 = 𝑁 ) ) ) |
| 17 |
|
olc |
⊢ ( 2 < 𝑁 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) |
| 18 |
17
|
2a1d |
⊢ ( 2 < 𝑁 → ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 19 |
|
oveq1 |
⊢ ( 𝑁 = 2 → ( 𝑁 + 1 ) = ( 2 + 1 ) ) |
| 20 |
19
|
oveq1d |
⊢ ( 𝑁 = 2 → ( ( 𝑁 + 1 ) / 2 ) = ( ( 2 + 1 ) / 2 ) ) |
| 21 |
20
|
eqcoms |
⊢ ( 2 = 𝑁 → ( ( 𝑁 + 1 ) / 2 ) = ( ( 2 + 1 ) / 2 ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 = 𝑁 ) → ( ( 𝑁 + 1 ) / 2 ) = ( ( 2 + 1 ) / 2 ) ) |
| 23 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 24 |
23
|
oveq1i |
⊢ ( ( 2 + 1 ) / 2 ) = ( 3 / 2 ) |
| 25 |
22 24
|
eqtrdi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 = 𝑁 ) → ( ( 𝑁 + 1 ) / 2 ) = ( 3 / 2 ) ) |
| 26 |
25
|
eleq1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 = 𝑁 ) → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ↔ ( 3 / 2 ) ∈ ℕ0 ) ) |
| 27 |
|
3halfnz |
⊢ ¬ ( 3 / 2 ) ∈ ℤ |
| 28 |
|
nn0z |
⊢ ( ( 3 / 2 ) ∈ ℕ0 → ( 3 / 2 ) ∈ ℤ ) |
| 29 |
28
|
pm2.24d |
⊢ ( ( 3 / 2 ) ∈ ℕ0 → ( ¬ ( 3 / 2 ) ∈ ℤ → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
| 30 |
27 29
|
mpi |
⊢ ( ( 3 / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) |
| 31 |
26 30
|
biimtrdi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 = 𝑁 ) → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
| 32 |
31
|
expcom |
⊢ ( 2 = 𝑁 → ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 33 |
18 32
|
jaoi |
⊢ ( ( 2 < 𝑁 ∨ 2 = 𝑁 ) → ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 34 |
33
|
com12 |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 < 𝑁 ∨ 2 = 𝑁 ) → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 35 |
16 34
|
sylbid |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 < 𝑁 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 36 |
35
|
com12 |
⊢ ( 1 < 𝑁 → ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 37 |
|
orc |
⊢ ( 𝑁 = 1 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) |
| 38 |
37
|
eqcoms |
⊢ ( 1 = 𝑁 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) |
| 39 |
38
|
2a1d |
⊢ ( 1 = 𝑁 → ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 40 |
36 39
|
jaoi |
⊢ ( ( 1 < 𝑁 ∨ 1 = 𝑁 ) → ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 41 |
40
|
com12 |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 1 < 𝑁 ∨ 1 = 𝑁 ) → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 42 |
5 41
|
sylbid |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 ≤ 𝑁 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
| 43 |
42
|
imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ) → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
| 44 |
2 43
|
sylbi |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
| 45 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 + 1 ) = ( 0 + 1 ) ) |
| 46 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 47 |
45 46
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( 𝑁 + 1 ) = 1 ) |
| 48 |
47
|
oveq1d |
⊢ ( 𝑁 = 0 → ( ( 𝑁 + 1 ) / 2 ) = ( 1 / 2 ) ) |
| 49 |
48
|
eleq1d |
⊢ ( 𝑁 = 0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ↔ ( 1 / 2 ) ∈ ℕ0 ) ) |
| 50 |
|
halfnz |
⊢ ¬ ( 1 / 2 ) ∈ ℤ |
| 51 |
|
nn0z |
⊢ ( ( 1 / 2 ) ∈ ℕ0 → ( 1 / 2 ) ∈ ℤ ) |
| 52 |
51
|
pm2.24d |
⊢ ( ( 1 / 2 ) ∈ ℕ0 → ( ¬ ( 1 / 2 ) ∈ ℤ → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
| 53 |
50 52
|
mpi |
⊢ ( ( 1 / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) |
| 54 |
49 53
|
biimtrdi |
⊢ ( 𝑁 = 0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
| 55 |
44 54
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
| 56 |
1 55
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
| 57 |
56
|
imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) |