Metamath Proof Explorer


Theorem nnne1ge2

Description: A positive integer which is not 1 is greater than or equal to 2. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion nnne1ge2 ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → 2 ≤ 𝑁 )

Proof

Step Hyp Ref Expression
1 nnnn0 ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 )
2 1 adantr ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → 𝑁 ∈ ℕ0 )
3 nnne0 ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 )
4 3 adantr ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → 𝑁 ≠ 0 )
5 simpr ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → 𝑁 ≠ 1 )
6 nn0n0n1ge2 ( ( 𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → 2 ≤ 𝑁 )
7 2 4 5 6 syl3anc ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → 2 ≤ 𝑁 )