Description: A positive integer which is not 1 is greater than or equal to 2. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnne1ge2 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → 2 ≤ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → 𝑁 ∈ ℕ0 ) |
| 3 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → 𝑁 ≠ 0 ) |
| 5 | simpr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → 𝑁 ≠ 1 ) | |
| 6 | nn0n0n1ge2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → 2 ≤ 𝑁 ) | |
| 7 | 2 4 5 6 | syl3anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → 2 ≤ 𝑁 ) |