Metamath Proof Explorer


Theorem nnsgrp

Description: The structure of positive integers together with the addition of complex numbers is a semigroup. (Contributed by AV, 4-Feb-2020)

Ref Expression
Hypothesis nnsgrp.m 𝑀 = ( ℂflds ℕ )
Assertion nnsgrp 𝑀 ∈ Smgrp

Proof

Step Hyp Ref Expression
1 nnsgrp.m 𝑀 = ( ℂflds ℕ )
2 1 nnsgrpmgm 𝑀 ∈ Mgm
3 nncn ( 𝑥 ∈ ℕ → 𝑥 ∈ ℂ )
4 nncn ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ )
5 nncn ( 𝑧 ∈ ℕ → 𝑧 ∈ ℂ )
6 addass ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
7 3 4 5 6 syl3an ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
8 7 3expia ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑧 ∈ ℕ → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) )
9 8 ralrimiv ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ∀ 𝑧 ∈ ℕ ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
10 9 rgen2 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) )
11 nnsscn ℕ ⊆ ℂ
12 1 cnfldsrngbas ( ℕ ⊆ ℂ → ℕ = ( Base ‘ 𝑀 ) )
13 11 12 ax-mp ℕ = ( Base ‘ 𝑀 )
14 nnex ℕ ∈ V
15 1 cnfldsrngadd ( ℕ ∈ V → + = ( +g𝑀 ) )
16 14 15 ax-mp + = ( +g𝑀 )
17 13 16 issgrp ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) )
18 2 10 17 mpbir2an 𝑀 ∈ Smgrp