Step |
Hyp |
Ref |
Expression |
1 |
|
nnsgrp.m |
⊢ 𝑀 = ( ℂfld ↾s ℕ ) |
2 |
1
|
nnsgrpmgm |
⊢ 𝑀 ∈ Mgm |
3 |
|
nncn |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℂ ) |
4 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
5 |
|
nncn |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℂ ) |
6 |
|
addass |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
7 |
3 4 5 6
|
syl3an |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
8 |
7
|
3expia |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑧 ∈ ℕ → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) |
9 |
8
|
ralrimiv |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ∀ 𝑧 ∈ ℕ ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
10 |
9
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) |
11 |
|
nnsscn |
⊢ ℕ ⊆ ℂ |
12 |
1
|
cnfldsrngbas |
⊢ ( ℕ ⊆ ℂ → ℕ = ( Base ‘ 𝑀 ) ) |
13 |
11 12
|
ax-mp |
⊢ ℕ = ( Base ‘ 𝑀 ) |
14 |
|
nnex |
⊢ ℕ ∈ V |
15 |
1
|
cnfldsrngadd |
⊢ ( ℕ ∈ V → + = ( +g ‘ 𝑀 ) ) |
16 |
14 15
|
ax-mp |
⊢ + = ( +g ‘ 𝑀 ) |
17 |
13 16
|
issgrp |
⊢ ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) |
18 |
2 10 17
|
mpbir2an |
⊢ 𝑀 ∈ Smgrp |