| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnsgrp.m | ⊢ 𝑀  =  ( ℂfld  ↾s  ℕ ) | 
						
							| 2 | 1 | nnsgrpmgm | ⊢ 𝑀  ∈  Mgm | 
						
							| 3 |  | nncn | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℂ ) | 
						
							| 4 |  | nncn | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℂ ) | 
						
							| 5 |  | nncn | ⊢ ( 𝑧  ∈  ℕ  →  𝑧  ∈  ℂ ) | 
						
							| 6 |  | addass | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 7 | 3 4 5 6 | syl3an | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 8 | 7 | 3expia | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( 𝑧  ∈  ℕ  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) ) | 
						
							| 9 | 8 | ralrimiv | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ∀ 𝑧  ∈  ℕ ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 10 | 9 | rgen2 | ⊢ ∀ 𝑥  ∈  ℕ ∀ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ℕ ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) | 
						
							| 11 |  | nnsscn | ⊢ ℕ  ⊆  ℂ | 
						
							| 12 | 1 | cnfldsrngbas | ⊢ ( ℕ  ⊆  ℂ  →  ℕ  =  ( Base ‘ 𝑀 ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ ℕ  =  ( Base ‘ 𝑀 ) | 
						
							| 14 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 15 | 1 | cnfldsrngadd | ⊢ ( ℕ  ∈  V  →   +   =  ( +g ‘ 𝑀 ) ) | 
						
							| 16 | 14 15 | ax-mp | ⊢  +   =  ( +g ‘ 𝑀 ) | 
						
							| 17 | 13 16 | issgrp | ⊢ ( 𝑀  ∈  Smgrp  ↔  ( 𝑀  ∈  Mgm  ∧  ∀ 𝑥  ∈  ℕ ∀ 𝑦  ∈  ℕ ∀ 𝑧  ∈  ℕ ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) ) | 
						
							| 18 | 2 10 17 | mpbir2an | ⊢ 𝑀  ∈  Smgrp |