| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnwof.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
nnwof.2 |
⊢ Ⅎ 𝑦 𝐴 |
| 3 |
|
nnwo |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ) |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐴 |
| 5 |
|
nfv |
⊢ Ⅎ 𝑥 𝑤 ≤ 𝑣 |
| 6 |
1 5
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 |
| 7 |
|
nfv |
⊢ Ⅎ 𝑤 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 |
| 8 |
|
breq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ≤ 𝑣 ↔ 𝑥 ≤ 𝑣 ) ) |
| 9 |
8
|
ralbidv |
⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ↔ ∀ 𝑣 ∈ 𝐴 𝑥 ≤ 𝑣 ) ) |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑣 𝐴 |
| 11 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ≤ 𝑣 |
| 12 |
|
nfv |
⊢ Ⅎ 𝑣 𝑥 ≤ 𝑦 |
| 13 |
|
breq2 |
⊢ ( 𝑣 = 𝑦 → ( 𝑥 ≤ 𝑣 ↔ 𝑥 ≤ 𝑦 ) ) |
| 14 |
10 2 11 12 13
|
cbvralfw |
⊢ ( ∀ 𝑣 ∈ 𝐴 𝑥 ≤ 𝑣 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 15 |
9 14
|
bitrdi |
⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 16 |
4 1 6 7 15
|
cbvrexfw |
⊢ ( ∃ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 17 |
3 16
|
sylib |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |