Metamath Proof Explorer


Theorem nnwof

Description: Well-ordering principle: any nonempty set of positive integers has a least element. This version allows x and y to be present in A as long as they are effectively not free. (Contributed by NM, 17-Aug-2001) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses nnwof.1 _xA
nnwof.2 _yA
Assertion nnwof AAxAyAxy

Proof

Step Hyp Ref Expression
1 nnwof.1 _xA
2 nnwof.2 _yA
3 nnwo AAwAvAwv
4 nfcv _wA
5 nfv xwv
6 1 5 nfralw xvAwv
7 nfv wyAxy
8 breq1 w=xwvxv
9 8 ralbidv w=xvAwvvAxv
10 nfcv _vA
11 nfv yxv
12 nfv vxy
13 breq2 v=yxvxy
14 10 2 11 12 13 cbvralfw vAxvyAxy
15 9 14 bitrdi w=xvAwvyAxy
16 4 1 6 7 15 cbvrexfw wAvAwvxAyAxy
17 3 16 sylib AAxAyAxy