Description: Well-ordering principle: any nonempty set of positive integers has a least element. This version allows x and y to be present in A as long as they are effectively not free. (Contributed by NM, 17-Aug-2001) (Revised by Mario Carneiro, 15-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nnwof.1 | |
|
nnwof.2 | |
||
Assertion | nnwof | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnwof.1 | |
|
2 | nnwof.2 | |
|
3 | nnwo | |
|
4 | nfcv | |
|
5 | nfv | |
|
6 | 1 5 | nfralw | |
7 | nfv | |
|
8 | breq1 | |
|
9 | 8 | ralbidv | |
10 | nfcv | |
|
11 | nfv | |
|
12 | nfv | |
|
13 | breq2 | |
|
14 | 10 2 11 12 13 | cbvralfw | |
15 | 9 14 | bitrdi | |
16 | 4 1 6 7 15 | cbvrexfw | |
17 | 3 16 | sylib | |