| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nzprmdif.m | ⊢ ( 𝜑  →  𝑀  ∈  ℙ ) | 
						
							| 2 |  | nzprmdif.n | ⊢ ( 𝜑  →  𝑁  ∈  ℙ ) | 
						
							| 3 |  | nzprmdif.ne | ⊢ ( 𝜑  →  𝑀  ≠  𝑁 ) | 
						
							| 4 |  | difin | ⊢ ( (  ∥   “  { 𝑀 } )  ∖  ( (  ∥   “  { 𝑀 } )  ∩  (  ∥   “  { 𝑁 } ) ) )  =  ( (  ∥   “  { 𝑀 } )  ∖  (  ∥   “  { 𝑁 } ) ) | 
						
							| 5 |  | prmz | ⊢ ( 𝑀  ∈  ℙ  →  𝑀  ∈  ℤ ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 7 |  | prmz | ⊢ ( 𝑁  ∈  ℙ  →  𝑁  ∈  ℤ ) | 
						
							| 8 | 2 7 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 9 | 6 8 | nzin | ⊢ ( 𝜑  →  ( (  ∥   “  { 𝑀 } )  ∩  (  ∥   “  { 𝑁 } ) )  =  (  ∥   “  { ( 𝑀  lcm  𝑁 ) } ) ) | 
						
							| 10 | 9 | difeq2d | ⊢ ( 𝜑  →  ( (  ∥   “  { 𝑀 } )  ∖  ( (  ∥   “  { 𝑀 } )  ∩  (  ∥   “  { 𝑁 } ) ) )  =  ( (  ∥   “  { 𝑀 } )  ∖  (  ∥   “  { ( 𝑀  lcm  𝑁 ) } ) ) ) | 
						
							| 11 | 4 10 | eqtr3id | ⊢ ( 𝜑  →  ( (  ∥   “  { 𝑀 } )  ∖  (  ∥   “  { 𝑁 } ) )  =  ( (  ∥   “  { 𝑀 } )  ∖  (  ∥   “  { ( 𝑀  lcm  𝑁 ) } ) ) ) | 
						
							| 12 |  | lcmgcd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  lcm  𝑁 )  ·  ( 𝑀  gcd  𝑁 ) )  =  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 13 | 6 8 12 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑀  lcm  𝑁 )  ·  ( 𝑀  gcd  𝑁 ) )  =  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 14 |  | prmrp | ⊢ ( ( 𝑀  ∈  ℙ  ∧  𝑁  ∈  ℙ )  →  ( ( 𝑀  gcd  𝑁 )  =  1  ↔  𝑀  ≠  𝑁 ) ) | 
						
							| 15 | 1 2 14 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑀  gcd  𝑁 )  =  1  ↔  𝑀  ≠  𝑁 ) ) | 
						
							| 16 | 3 15 | mpbird | ⊢ ( 𝜑  →  ( 𝑀  gcd  𝑁 )  =  1 ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝑀  lcm  𝑁 )  ·  ( 𝑀  gcd  𝑁 ) )  =  ( ( 𝑀  lcm  𝑁 )  ·  1 ) ) | 
						
							| 18 |  | lcmcl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  lcm  𝑁 )  ∈  ℕ0 ) | 
						
							| 19 | 6 8 18 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  lcm  𝑁 )  ∈  ℕ0 ) | 
						
							| 20 | 19 | nn0cnd | ⊢ ( 𝜑  →  ( 𝑀  lcm  𝑁 )  ∈  ℂ ) | 
						
							| 21 | 20 | mulridd | ⊢ ( 𝜑  →  ( ( 𝑀  lcm  𝑁 )  ·  1 )  =  ( 𝑀  lcm  𝑁 ) ) | 
						
							| 22 | 17 21 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑀  lcm  𝑁 )  ·  ( 𝑀  gcd  𝑁 ) )  =  ( 𝑀  lcm  𝑁 ) ) | 
						
							| 23 | 6 | zred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 24 | 8 | zred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 25 | 23 24 | remulcld | ⊢ ( 𝜑  →  ( 𝑀  ·  𝑁 )  ∈  ℝ ) | 
						
							| 26 |  | prmnn | ⊢ ( 𝑀  ∈  ℙ  →  𝑀  ∈  ℕ ) | 
						
							| 27 | 1 26 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 28 | 27 | nnnn0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 29 | 28 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  𝑀 ) | 
						
							| 30 |  | prmnn | ⊢ ( 𝑁  ∈  ℙ  →  𝑁  ∈  ℕ ) | 
						
							| 31 | 2 30 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 32 | 31 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 33 | 32 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  𝑁 ) | 
						
							| 34 | 23 24 29 33 | mulge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝑀  ·  𝑁 ) ) | 
						
							| 35 | 25 34 | absidd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝑀  ·  𝑁 ) )  =  ( 𝑀  ·  𝑁 ) ) | 
						
							| 36 | 13 22 35 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝑀  lcm  𝑁 )  =  ( 𝑀  ·  𝑁 ) ) | 
						
							| 37 | 36 | sneqd | ⊢ ( 𝜑  →  { ( 𝑀  lcm  𝑁 ) }  =  { ( 𝑀  ·  𝑁 ) } ) | 
						
							| 38 | 37 | imaeq2d | ⊢ ( 𝜑  →  (  ∥   “  { ( 𝑀  lcm  𝑁 ) } )  =  (  ∥   “  { ( 𝑀  ·  𝑁 ) } ) ) | 
						
							| 39 | 38 | difeq2d | ⊢ ( 𝜑  →  ( (  ∥   “  { 𝑀 } )  ∖  (  ∥   “  { ( 𝑀  lcm  𝑁 ) } ) )  =  ( (  ∥   “  { 𝑀 } )  ∖  (  ∥   “  { ( 𝑀  ·  𝑁 ) } ) ) ) | 
						
							| 40 | 11 39 | eqtrd | ⊢ ( 𝜑  →  ( (  ∥   “  { 𝑀 } )  ∖  (  ∥   “  { 𝑁 } ) )  =  ( (  ∥   “  { 𝑀 } )  ∖  (  ∥   “  { ( 𝑀  ·  𝑁 ) } ) ) ) |