Metamath Proof Explorer


Theorem nzin

Description: The intersection of the set of multiples ofm, mℤ, and those ofn, nℤ, is the set of multiples of their least common multiple. Roughly Lemma 2.1(c) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5 and Problem 1(b) of https://people.math.binghamton.edu/mazur/teach/40107/40107h16sol.pdf p. 1, with mℤ and nℤ as images of the divides relation under m andn. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Hypotheses nzin.m ( 𝜑𝑀 ∈ ℤ )
nzin.n ( 𝜑𝑁 ∈ ℤ )
Assertion nzin ( 𝜑 → ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) = ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) )

Proof

Step Hyp Ref Expression
1 nzin.m ( 𝜑𝑀 ∈ ℤ )
2 nzin.n ( 𝜑𝑁 ∈ ℤ )
3 dvdszrcl ( 𝑀𝑛 → ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) )
4 dvdszrcl ( 𝑁𝑛 → ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) )
5 3 4 anim12i ( ( 𝑀𝑛𝑁𝑛 ) → ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) )
6 anandir ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) )
7 5 6 sylibr ( ( 𝑀𝑛𝑁𝑛 ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑛 ∈ ℤ ) )
8 7 ancomd ( ( 𝑀𝑛𝑁𝑛 ) → ( 𝑛 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) )
9 lcmdvds ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀𝑛𝑁𝑛 ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ) )
10 9 3expb ( ( 𝑛 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑀𝑛𝑁𝑛 ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ) )
11 8 10 mpcom ( ( 𝑀𝑛𝑁𝑛 ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑛 )
12 elin ( 𝑛 ∈ ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) ↔ ( 𝑛 ∈ ( ∥ “ { 𝑀 } ) ∧ 𝑛 ∈ ( ∥ “ { 𝑁 } ) ) )
13 reldvds Rel ∥
14 elrelimasn ( Rel ∥ → ( 𝑛 ∈ ( ∥ “ { 𝑀 } ) ↔ 𝑀𝑛 ) )
15 13 14 ax-mp ( 𝑛 ∈ ( ∥ “ { 𝑀 } ) ↔ 𝑀𝑛 )
16 elrelimasn ( Rel ∥ → ( 𝑛 ∈ ( ∥ “ { 𝑁 } ) ↔ 𝑁𝑛 ) )
17 13 16 ax-mp ( 𝑛 ∈ ( ∥ “ { 𝑁 } ) ↔ 𝑁𝑛 )
18 15 17 anbi12i ( ( 𝑛 ∈ ( ∥ “ { 𝑀 } ) ∧ 𝑛 ∈ ( ∥ “ { 𝑁 } ) ) ↔ ( 𝑀𝑛𝑁𝑛 ) )
19 12 18 bitri ( 𝑛 ∈ ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) ↔ ( 𝑀𝑛𝑁𝑛 ) )
20 elrelimasn ( Rel ∥ → ( 𝑛 ∈ ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ↔ ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ) )
21 13 20 ax-mp ( 𝑛 ∈ ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ↔ ( 𝑀 lcm 𝑁 ) ∥ 𝑛 )
22 11 19 21 3imtr4i ( 𝑛 ∈ ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) → 𝑛 ∈ ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) )
23 22 ssriv ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) ⊆ ( ∥ “ { ( 𝑀 lcm 𝑁 ) } )
24 23 a1i ( 𝜑 → ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) ⊆ ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) )
25 dvdslcm ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) )
26 1 2 25 syl2anc ( 𝜑 → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) )
27 26 simpld ( 𝜑𝑀 ∥ ( 𝑀 lcm 𝑁 ) )
28 lcmcl ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 )
29 1 2 28 syl2anc ( 𝜑 → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 )
30 29 nn0zd ( 𝜑 → ( 𝑀 lcm 𝑁 ) ∈ ℤ )
31 30 1 nzss ( 𝜑 → ( ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ⊆ ( ∥ “ { 𝑀 } ) ↔ 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ) )
32 27 31 mpbird ( 𝜑 → ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ⊆ ( ∥ “ { 𝑀 } ) )
33 26 simprd ( 𝜑𝑁 ∥ ( 𝑀 lcm 𝑁 ) )
34 30 2 nzss ( 𝜑 → ( ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ⊆ ( ∥ “ { 𝑁 } ) ↔ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) )
35 33 34 mpbird ( 𝜑 → ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ⊆ ( ∥ “ { 𝑁 } ) )
36 32 35 ssind ( 𝜑 → ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) ⊆ ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) )
37 24 36 eqssd ( 𝜑 → ( ( ∥ “ { 𝑀 } ) ∩ ( ∥ “ { 𝑁 } ) ) = ( ∥ “ { ( 𝑀 lcm 𝑁 ) } ) )