| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nzin.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | nzin.n | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 3 |  | dvdszrcl | ⊢ ( 𝑀  ∥  𝑛  →  ( 𝑀  ∈  ℤ  ∧  𝑛  ∈  ℤ ) ) | 
						
							| 4 |  | dvdszrcl | ⊢ ( 𝑁  ∥  𝑛  →  ( 𝑁  ∈  ℤ  ∧  𝑛  ∈  ℤ ) ) | 
						
							| 5 | 3 4 | anim12i | ⊢ ( ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 )  →  ( ( 𝑀  ∈  ℤ  ∧  𝑛  ∈  ℤ )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑛  ∈  ℤ ) ) ) | 
						
							| 6 |  | anandir | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑛  ∈  ℤ )  ↔  ( ( 𝑀  ∈  ℤ  ∧  𝑛  ∈  ℤ )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑛  ∈  ℤ ) ) ) | 
						
							| 7 | 5 6 | sylibr | ⊢ ( ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 )  →  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑛  ∈  ℤ ) ) | 
						
							| 8 | 7 | ancomd | ⊢ ( ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 )  →  ( 𝑛  ∈  ℤ  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) ) | 
						
							| 9 |  | lcmdvds | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 )  →  ( 𝑀  lcm  𝑁 )  ∥  𝑛 ) ) | 
						
							| 10 | 9 | 3expb | ⊢ ( ( 𝑛  ∈  ℤ  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 )  →  ( 𝑀  lcm  𝑁 )  ∥  𝑛 ) ) | 
						
							| 11 | 8 10 | mpcom | ⊢ ( ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 )  →  ( 𝑀  lcm  𝑁 )  ∥  𝑛 ) | 
						
							| 12 |  | elin | ⊢ ( 𝑛  ∈  ( (  ∥   “  { 𝑀 } )  ∩  (  ∥   “  { 𝑁 } ) )  ↔  ( 𝑛  ∈  (  ∥   “  { 𝑀 } )  ∧  𝑛  ∈  (  ∥   “  { 𝑁 } ) ) ) | 
						
							| 13 |  | reldvds | ⊢ Rel   ∥ | 
						
							| 14 |  | elrelimasn | ⊢ ( Rel   ∥   →  ( 𝑛  ∈  (  ∥   “  { 𝑀 } )  ↔  𝑀  ∥  𝑛 ) ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ ( 𝑛  ∈  (  ∥   “  { 𝑀 } )  ↔  𝑀  ∥  𝑛 ) | 
						
							| 16 |  | elrelimasn | ⊢ ( Rel   ∥   →  ( 𝑛  ∈  (  ∥   “  { 𝑁 } )  ↔  𝑁  ∥  𝑛 ) ) | 
						
							| 17 | 13 16 | ax-mp | ⊢ ( 𝑛  ∈  (  ∥   “  { 𝑁 } )  ↔  𝑁  ∥  𝑛 ) | 
						
							| 18 | 15 17 | anbi12i | ⊢ ( ( 𝑛  ∈  (  ∥   “  { 𝑀 } )  ∧  𝑛  ∈  (  ∥   “  { 𝑁 } ) )  ↔  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) | 
						
							| 19 | 12 18 | bitri | ⊢ ( 𝑛  ∈  ( (  ∥   “  { 𝑀 } )  ∩  (  ∥   “  { 𝑁 } ) )  ↔  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) | 
						
							| 20 |  | elrelimasn | ⊢ ( Rel   ∥   →  ( 𝑛  ∈  (  ∥   “  { ( 𝑀  lcm  𝑁 ) } )  ↔  ( 𝑀  lcm  𝑁 )  ∥  𝑛 ) ) | 
						
							| 21 | 13 20 | ax-mp | ⊢ ( 𝑛  ∈  (  ∥   “  { ( 𝑀  lcm  𝑁 ) } )  ↔  ( 𝑀  lcm  𝑁 )  ∥  𝑛 ) | 
						
							| 22 | 11 19 21 | 3imtr4i | ⊢ ( 𝑛  ∈  ( (  ∥   “  { 𝑀 } )  ∩  (  ∥   “  { 𝑁 } ) )  →  𝑛  ∈  (  ∥   “  { ( 𝑀  lcm  𝑁 ) } ) ) | 
						
							| 23 | 22 | ssriv | ⊢ ( (  ∥   “  { 𝑀 } )  ∩  (  ∥   “  { 𝑁 } ) )  ⊆  (  ∥   “  { ( 𝑀  lcm  𝑁 ) } ) | 
						
							| 24 | 23 | a1i | ⊢ ( 𝜑  →  ( (  ∥   “  { 𝑀 } )  ∩  (  ∥   “  { 𝑁 } ) )  ⊆  (  ∥   “  { ( 𝑀  lcm  𝑁 ) } ) ) | 
						
							| 25 |  | dvdslcm | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) ) | 
						
							| 26 | 1 2 25 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  ∥  ( 𝑀  lcm  𝑁 )  ∧  𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) ) | 
						
							| 27 | 26 | simpld | ⊢ ( 𝜑  →  𝑀  ∥  ( 𝑀  lcm  𝑁 ) ) | 
						
							| 28 |  | lcmcl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  lcm  𝑁 )  ∈  ℕ0 ) | 
						
							| 29 | 1 2 28 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  lcm  𝑁 )  ∈  ℕ0 ) | 
						
							| 30 | 29 | nn0zd | ⊢ ( 𝜑  →  ( 𝑀  lcm  𝑁 )  ∈  ℤ ) | 
						
							| 31 | 30 1 | nzss | ⊢ ( 𝜑  →  ( (  ∥   “  { ( 𝑀  lcm  𝑁 ) } )  ⊆  (  ∥   “  { 𝑀 } )  ↔  𝑀  ∥  ( 𝑀  lcm  𝑁 ) ) ) | 
						
							| 32 | 27 31 | mpbird | ⊢ ( 𝜑  →  (  ∥   “  { ( 𝑀  lcm  𝑁 ) } )  ⊆  (  ∥   “  { 𝑀 } ) ) | 
						
							| 33 | 26 | simprd | ⊢ ( 𝜑  →  𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) | 
						
							| 34 | 30 2 | nzss | ⊢ ( 𝜑  →  ( (  ∥   “  { ( 𝑀  lcm  𝑁 ) } )  ⊆  (  ∥   “  { 𝑁 } )  ↔  𝑁  ∥  ( 𝑀  lcm  𝑁 ) ) ) | 
						
							| 35 | 33 34 | mpbird | ⊢ ( 𝜑  →  (  ∥   “  { ( 𝑀  lcm  𝑁 ) } )  ⊆  (  ∥   “  { 𝑁 } ) ) | 
						
							| 36 | 32 35 | ssind | ⊢ ( 𝜑  →  (  ∥   “  { ( 𝑀  lcm  𝑁 ) } )  ⊆  ( (  ∥   “  { 𝑀 } )  ∩  (  ∥   “  { 𝑁 } ) ) ) | 
						
							| 37 | 24 36 | eqssd | ⊢ ( 𝜑  →  ( (  ∥   “  { 𝑀 } )  ∩  (  ∥   “  { 𝑁 } ) )  =  (  ∥   “  { ( 𝑀  lcm  𝑁 ) } ) ) |