Step |
Hyp |
Ref |
Expression |
1 |
|
nzin.m |
|- ( ph -> M e. ZZ ) |
2 |
|
nzin.n |
|- ( ph -> N e. ZZ ) |
3 |
|
dvdszrcl |
|- ( M || n -> ( M e. ZZ /\ n e. ZZ ) ) |
4 |
|
dvdszrcl |
|- ( N || n -> ( N e. ZZ /\ n e. ZZ ) ) |
5 |
3 4
|
anim12i |
|- ( ( M || n /\ N || n ) -> ( ( M e. ZZ /\ n e. ZZ ) /\ ( N e. ZZ /\ n e. ZZ ) ) ) |
6 |
|
anandir |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ n e. ZZ ) <-> ( ( M e. ZZ /\ n e. ZZ ) /\ ( N e. ZZ /\ n e. ZZ ) ) ) |
7 |
5 6
|
sylibr |
|- ( ( M || n /\ N || n ) -> ( ( M e. ZZ /\ N e. ZZ ) /\ n e. ZZ ) ) |
8 |
7
|
ancomd |
|- ( ( M || n /\ N || n ) -> ( n e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) ) |
9 |
|
lcmdvds |
|- ( ( n e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || n /\ N || n ) -> ( M lcm N ) || n ) ) |
10 |
9
|
3expb |
|- ( ( n e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( M || n /\ N || n ) -> ( M lcm N ) || n ) ) |
11 |
8 10
|
mpcom |
|- ( ( M || n /\ N || n ) -> ( M lcm N ) || n ) |
12 |
|
elin |
|- ( n e. ( ( || " { M } ) i^i ( || " { N } ) ) <-> ( n e. ( || " { M } ) /\ n e. ( || " { N } ) ) ) |
13 |
|
reldvds |
|- Rel || |
14 |
|
elrelimasn |
|- ( Rel || -> ( n e. ( || " { M } ) <-> M || n ) ) |
15 |
13 14
|
ax-mp |
|- ( n e. ( || " { M } ) <-> M || n ) |
16 |
|
elrelimasn |
|- ( Rel || -> ( n e. ( || " { N } ) <-> N || n ) ) |
17 |
13 16
|
ax-mp |
|- ( n e. ( || " { N } ) <-> N || n ) |
18 |
15 17
|
anbi12i |
|- ( ( n e. ( || " { M } ) /\ n e. ( || " { N } ) ) <-> ( M || n /\ N || n ) ) |
19 |
12 18
|
bitri |
|- ( n e. ( ( || " { M } ) i^i ( || " { N } ) ) <-> ( M || n /\ N || n ) ) |
20 |
|
elrelimasn |
|- ( Rel || -> ( n e. ( || " { ( M lcm N ) } ) <-> ( M lcm N ) || n ) ) |
21 |
13 20
|
ax-mp |
|- ( n e. ( || " { ( M lcm N ) } ) <-> ( M lcm N ) || n ) |
22 |
11 19 21
|
3imtr4i |
|- ( n e. ( ( || " { M } ) i^i ( || " { N } ) ) -> n e. ( || " { ( M lcm N ) } ) ) |
23 |
22
|
ssriv |
|- ( ( || " { M } ) i^i ( || " { N } ) ) C_ ( || " { ( M lcm N ) } ) |
24 |
23
|
a1i |
|- ( ph -> ( ( || " { M } ) i^i ( || " { N } ) ) C_ ( || " { ( M lcm N ) } ) ) |
25 |
|
dvdslcm |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
26 |
1 2 25
|
syl2anc |
|- ( ph -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
27 |
26
|
simpld |
|- ( ph -> M || ( M lcm N ) ) |
28 |
|
lcmcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |
29 |
1 2 28
|
syl2anc |
|- ( ph -> ( M lcm N ) e. NN0 ) |
30 |
29
|
nn0zd |
|- ( ph -> ( M lcm N ) e. ZZ ) |
31 |
30 1
|
nzss |
|- ( ph -> ( ( || " { ( M lcm N ) } ) C_ ( || " { M } ) <-> M || ( M lcm N ) ) ) |
32 |
27 31
|
mpbird |
|- ( ph -> ( || " { ( M lcm N ) } ) C_ ( || " { M } ) ) |
33 |
26
|
simprd |
|- ( ph -> N || ( M lcm N ) ) |
34 |
30 2
|
nzss |
|- ( ph -> ( ( || " { ( M lcm N ) } ) C_ ( || " { N } ) <-> N || ( M lcm N ) ) ) |
35 |
33 34
|
mpbird |
|- ( ph -> ( || " { ( M lcm N ) } ) C_ ( || " { N } ) ) |
36 |
32 35
|
ssind |
|- ( ph -> ( || " { ( M lcm N ) } ) C_ ( ( || " { M } ) i^i ( || " { N } ) ) ) |
37 |
24 36
|
eqssd |
|- ( ph -> ( ( || " { M } ) i^i ( || " { N } ) ) = ( || " { ( M lcm N ) } ) ) |