| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nzin.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | nzin.n |  |-  ( ph -> N e. ZZ ) | 
						
							| 3 |  | dvdszrcl |  |-  ( M || n -> ( M e. ZZ /\ n e. ZZ ) ) | 
						
							| 4 |  | dvdszrcl |  |-  ( N || n -> ( N e. ZZ /\ n e. ZZ ) ) | 
						
							| 5 | 3 4 | anim12i |  |-  ( ( M || n /\ N || n ) -> ( ( M e. ZZ /\ n e. ZZ ) /\ ( N e. ZZ /\ n e. ZZ ) ) ) | 
						
							| 6 |  | anandir |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ n e. ZZ ) <-> ( ( M e. ZZ /\ n e. ZZ ) /\ ( N e. ZZ /\ n e. ZZ ) ) ) | 
						
							| 7 | 5 6 | sylibr |  |-  ( ( M || n /\ N || n ) -> ( ( M e. ZZ /\ N e. ZZ ) /\ n e. ZZ ) ) | 
						
							| 8 | 7 | ancomd |  |-  ( ( M || n /\ N || n ) -> ( n e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) ) | 
						
							| 9 |  | lcmdvds |  |-  ( ( n e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || n /\ N || n ) -> ( M lcm N ) || n ) ) | 
						
							| 10 | 9 | 3expb |  |-  ( ( n e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( M || n /\ N || n ) -> ( M lcm N ) || n ) ) | 
						
							| 11 | 8 10 | mpcom |  |-  ( ( M || n /\ N || n ) -> ( M lcm N ) || n ) | 
						
							| 12 |  | elin |  |-  ( n e. ( ( || " { M } ) i^i ( || " { N } ) ) <-> ( n e. ( || " { M } ) /\ n e. ( || " { N } ) ) ) | 
						
							| 13 |  | reldvds |  |-  Rel || | 
						
							| 14 |  | elrelimasn |  |-  ( Rel || -> ( n e. ( || " { M } ) <-> M || n ) ) | 
						
							| 15 | 13 14 | ax-mp |  |-  ( n e. ( || " { M } ) <-> M || n ) | 
						
							| 16 |  | elrelimasn |  |-  ( Rel || -> ( n e. ( || " { N } ) <-> N || n ) ) | 
						
							| 17 | 13 16 | ax-mp |  |-  ( n e. ( || " { N } ) <-> N || n ) | 
						
							| 18 | 15 17 | anbi12i |  |-  ( ( n e. ( || " { M } ) /\ n e. ( || " { N } ) ) <-> ( M || n /\ N || n ) ) | 
						
							| 19 | 12 18 | bitri |  |-  ( n e. ( ( || " { M } ) i^i ( || " { N } ) ) <-> ( M || n /\ N || n ) ) | 
						
							| 20 |  | elrelimasn |  |-  ( Rel || -> ( n e. ( || " { ( M lcm N ) } ) <-> ( M lcm N ) || n ) ) | 
						
							| 21 | 13 20 | ax-mp |  |-  ( n e. ( || " { ( M lcm N ) } ) <-> ( M lcm N ) || n ) | 
						
							| 22 | 11 19 21 | 3imtr4i |  |-  ( n e. ( ( || " { M } ) i^i ( || " { N } ) ) -> n e. ( || " { ( M lcm N ) } ) ) | 
						
							| 23 | 22 | ssriv |  |-  ( ( || " { M } ) i^i ( || " { N } ) ) C_ ( || " { ( M lcm N ) } ) | 
						
							| 24 | 23 | a1i |  |-  ( ph -> ( ( || " { M } ) i^i ( || " { N } ) ) C_ ( || " { ( M lcm N ) } ) ) | 
						
							| 25 |  | dvdslcm |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) | 
						
							| 26 | 1 2 25 | syl2anc |  |-  ( ph -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) | 
						
							| 27 | 26 | simpld |  |-  ( ph -> M || ( M lcm N ) ) | 
						
							| 28 |  | lcmcl |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) | 
						
							| 29 | 1 2 28 | syl2anc |  |-  ( ph -> ( M lcm N ) e. NN0 ) | 
						
							| 30 | 29 | nn0zd |  |-  ( ph -> ( M lcm N ) e. ZZ ) | 
						
							| 31 | 30 1 | nzss |  |-  ( ph -> ( ( || " { ( M lcm N ) } ) C_ ( || " { M } ) <-> M || ( M lcm N ) ) ) | 
						
							| 32 | 27 31 | mpbird |  |-  ( ph -> ( || " { ( M lcm N ) } ) C_ ( || " { M } ) ) | 
						
							| 33 | 26 | simprd |  |-  ( ph -> N || ( M lcm N ) ) | 
						
							| 34 | 30 2 | nzss |  |-  ( ph -> ( ( || " { ( M lcm N ) } ) C_ ( || " { N } ) <-> N || ( M lcm N ) ) ) | 
						
							| 35 | 33 34 | mpbird |  |-  ( ph -> ( || " { ( M lcm N ) } ) C_ ( || " { N } ) ) | 
						
							| 36 | 32 35 | ssind |  |-  ( ph -> ( || " { ( M lcm N ) } ) C_ ( ( || " { M } ) i^i ( || " { N } ) ) ) | 
						
							| 37 | 24 36 | eqssd |  |-  ( ph -> ( ( || " { M } ) i^i ( || " { N } ) ) = ( || " { ( M lcm N ) } ) ) |