| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nzss.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | nzss.n |  |-  ( ph -> N e. V ) | 
						
							| 3 |  | iddvds |  |-  ( M e. ZZ -> M || M ) | 
						
							| 4 |  | breq2 |  |-  ( x = M -> ( M || x <-> M || M ) ) | 
						
							| 5 | 4 | elabg |  |-  ( M e. ZZ -> ( M e. { x | M || x } <-> M || M ) ) | 
						
							| 6 | 3 5 | mpbird |  |-  ( M e. ZZ -> M e. { x | M || x } ) | 
						
							| 7 |  | reldvds |  |-  Rel || | 
						
							| 8 |  | relimasn |  |-  ( Rel || -> ( || " { M } ) = { x | M || x } ) | 
						
							| 9 | 7 8 | ax-mp |  |-  ( || " { M } ) = { x | M || x } | 
						
							| 10 | 6 9 | eleqtrrdi |  |-  ( M e. ZZ -> M e. ( || " { M } ) ) | 
						
							| 11 |  | ssel |  |-  ( ( || " { M } ) C_ ( || " { N } ) -> ( M e. ( || " { M } ) -> M e. ( || " { N } ) ) ) | 
						
							| 12 | 10 11 | syl5 |  |-  ( ( || " { M } ) C_ ( || " { N } ) -> ( M e. ZZ -> M e. ( || " { N } ) ) ) | 
						
							| 13 |  | breq2 |  |-  ( x = M -> ( N || x <-> N || M ) ) | 
						
							| 14 |  | relimasn |  |-  ( Rel || -> ( || " { N } ) = { x | N || x } ) | 
						
							| 15 | 7 14 | ax-mp |  |-  ( || " { N } ) = { x | N || x } | 
						
							| 16 | 13 15 | elab2g |  |-  ( M e. ZZ -> ( M e. ( || " { N } ) <-> N || M ) ) | 
						
							| 17 | 12 16 | mpbidi |  |-  ( ( || " { M } ) C_ ( || " { N } ) -> ( M e. ZZ -> N || M ) ) | 
						
							| 18 | 17 | com12 |  |-  ( M e. ZZ -> ( ( || " { M } ) C_ ( || " { N } ) -> N || M ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( M e. ZZ /\ N e. V ) -> ( ( || " { M } ) C_ ( || " { N } ) -> N || M ) ) | 
						
							| 20 |  | ssid |  |-  { 0 } C_ { 0 } | 
						
							| 21 |  | simpl |  |-  ( ( N || M /\ N = 0 ) -> N || M ) | 
						
							| 22 |  | breq1 |  |-  ( N = 0 -> ( N || M <-> 0 || M ) ) | 
						
							| 23 |  | dvdszrcl |  |-  ( N || M -> ( N e. ZZ /\ M e. ZZ ) ) | 
						
							| 24 | 23 | simprd |  |-  ( N || M -> M e. ZZ ) | 
						
							| 25 |  | 0dvds |  |-  ( M e. ZZ -> ( 0 || M <-> M = 0 ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( N || M -> ( 0 || M <-> M = 0 ) ) | 
						
							| 27 | 22 26 | sylan9bbr |  |-  ( ( N || M /\ N = 0 ) -> ( N || M <-> M = 0 ) ) | 
						
							| 28 | 21 27 | mpbid |  |-  ( ( N || M /\ N = 0 ) -> M = 0 ) | 
						
							| 29 | 28 | breq1d |  |-  ( ( N || M /\ N = 0 ) -> ( M || x <-> 0 || x ) ) | 
						
							| 30 |  | 0dvds |  |-  ( x e. ZZ -> ( 0 || x <-> x = 0 ) ) | 
						
							| 31 | 29 30 | sylan9bb |  |-  ( ( ( N || M /\ N = 0 ) /\ x e. ZZ ) -> ( M || x <-> x = 0 ) ) | 
						
							| 32 | 31 | rabbidva |  |-  ( ( N || M /\ N = 0 ) -> { x e. ZZ | M || x } = { x e. ZZ | x = 0 } ) | 
						
							| 33 |  | 0z |  |-  0 e. ZZ | 
						
							| 34 |  | rabsn |  |-  ( 0 e. ZZ -> { x e. ZZ | x = 0 } = { 0 } ) | 
						
							| 35 | 33 34 | ax-mp |  |-  { x e. ZZ | x = 0 } = { 0 } | 
						
							| 36 | 32 35 | eqtrdi |  |-  ( ( N || M /\ N = 0 ) -> { x e. ZZ | M || x } = { 0 } ) | 
						
							| 37 |  | breq1 |  |-  ( N = 0 -> ( N || x <-> 0 || x ) ) | 
						
							| 38 | 37 | rabbidv |  |-  ( N = 0 -> { x e. ZZ | N || x } = { x e. ZZ | 0 || x } ) | 
						
							| 39 | 30 | rabbiia |  |-  { x e. ZZ | 0 || x } = { x e. ZZ | x = 0 } | 
						
							| 40 | 39 35 | eqtri |  |-  { x e. ZZ | 0 || x } = { 0 } | 
						
							| 41 | 38 40 | eqtrdi |  |-  ( N = 0 -> { x e. ZZ | N || x } = { 0 } ) | 
						
							| 42 | 41 | adantl |  |-  ( ( N || M /\ N = 0 ) -> { x e. ZZ | N || x } = { 0 } ) | 
						
							| 43 | 36 42 | sseq12d |  |-  ( ( N || M /\ N = 0 ) -> ( { x e. ZZ | M || x } C_ { x e. ZZ | N || x } <-> { 0 } C_ { 0 } ) ) | 
						
							| 44 | 20 43 | mpbiri |  |-  ( ( N || M /\ N = 0 ) -> { x e. ZZ | M || x } C_ { x e. ZZ | N || x } ) | 
						
							| 45 | 24 | zcnd |  |-  ( N || M -> M e. CC ) | 
						
							| 46 | 45 | ad2antrr |  |-  ( ( ( N || M /\ N =/= 0 ) /\ n e. ZZ ) -> M e. CC ) | 
						
							| 47 | 23 | simpld |  |-  ( N || M -> N e. ZZ ) | 
						
							| 48 | 47 | zcnd |  |-  ( N || M -> N e. CC ) | 
						
							| 49 | 48 | ad2antrr |  |-  ( ( ( N || M /\ N =/= 0 ) /\ n e. ZZ ) -> N e. CC ) | 
						
							| 50 |  | simplr |  |-  ( ( ( N || M /\ N =/= 0 ) /\ n e. ZZ ) -> N =/= 0 ) | 
						
							| 51 | 46 49 50 | divcan2d |  |-  ( ( ( N || M /\ N =/= 0 ) /\ n e. ZZ ) -> ( N x. ( M / N ) ) = M ) | 
						
							| 52 | 51 | breq1d |  |-  ( ( ( N || M /\ N =/= 0 ) /\ n e. ZZ ) -> ( ( N x. ( M / N ) ) || n <-> M || n ) ) | 
						
							| 53 | 47 | adantr |  |-  ( ( N || M /\ N =/= 0 ) -> N e. ZZ ) | 
						
							| 54 |  | dvdsval2 |  |-  ( ( N e. ZZ /\ N =/= 0 /\ M e. ZZ ) -> ( N || M <-> ( M / N ) e. ZZ ) ) | 
						
							| 55 | 54 | biimpd |  |-  ( ( N e. ZZ /\ N =/= 0 /\ M e. ZZ ) -> ( N || M -> ( M / N ) e. ZZ ) ) | 
						
							| 56 | 55 | 3com23 |  |-  ( ( N e. ZZ /\ M e. ZZ /\ N =/= 0 ) -> ( N || M -> ( M / N ) e. ZZ ) ) | 
						
							| 57 | 56 | 3expa |  |-  ( ( ( N e. ZZ /\ M e. ZZ ) /\ N =/= 0 ) -> ( N || M -> ( M / N ) e. ZZ ) ) | 
						
							| 58 | 23 57 | sylan |  |-  ( ( N || M /\ N =/= 0 ) -> ( N || M -> ( M / N ) e. ZZ ) ) | 
						
							| 59 | 58 | imp |  |-  ( ( ( N || M /\ N =/= 0 ) /\ N || M ) -> ( M / N ) e. ZZ ) | 
						
							| 60 | 59 | anabss1 |  |-  ( ( N || M /\ N =/= 0 ) -> ( M / N ) e. ZZ ) | 
						
							| 61 | 53 60 | jca |  |-  ( ( N || M /\ N =/= 0 ) -> ( N e. ZZ /\ ( M / N ) e. ZZ ) ) | 
						
							| 62 |  | muldvds1 |  |-  ( ( N e. ZZ /\ ( M / N ) e. ZZ /\ n e. ZZ ) -> ( ( N x. ( M / N ) ) || n -> N || n ) ) | 
						
							| 63 | 62 | 3expa |  |-  ( ( ( N e. ZZ /\ ( M / N ) e. ZZ ) /\ n e. ZZ ) -> ( ( N x. ( M / N ) ) || n -> N || n ) ) | 
						
							| 64 | 61 63 | sylan |  |-  ( ( ( N || M /\ N =/= 0 ) /\ n e. ZZ ) -> ( ( N x. ( M / N ) ) || n -> N || n ) ) | 
						
							| 65 | 52 64 | sylbird |  |-  ( ( ( N || M /\ N =/= 0 ) /\ n e. ZZ ) -> ( M || n -> N || n ) ) | 
						
							| 66 | 65 | ss2rabdv |  |-  ( ( N || M /\ N =/= 0 ) -> { n e. ZZ | M || n } C_ { n e. ZZ | N || n } ) | 
						
							| 67 |  | breq2 |  |-  ( n = x -> ( M || n <-> M || x ) ) | 
						
							| 68 | 67 | cbvrabv |  |-  { n e. ZZ | M || n } = { x e. ZZ | M || x } | 
						
							| 69 |  | breq2 |  |-  ( n = x -> ( N || n <-> N || x ) ) | 
						
							| 70 | 69 | cbvrabv |  |-  { n e. ZZ | N || n } = { x e. ZZ | N || x } | 
						
							| 71 | 66 68 70 | 3sstr3g |  |-  ( ( N || M /\ N =/= 0 ) -> { x e. ZZ | M || x } C_ { x e. ZZ | N || x } ) | 
						
							| 72 | 44 71 | pm2.61dane |  |-  ( N || M -> { x e. ZZ | M || x } C_ { x e. ZZ | N || x } ) | 
						
							| 73 |  | breq1 |  |-  ( n = M -> ( n || x <-> M || x ) ) | 
						
							| 74 | 73 | rabbidv |  |-  ( n = M -> { x e. ZZ | n || x } = { x e. ZZ | M || x } ) | 
						
							| 75 | 73 | abbidv |  |-  ( n = M -> { x | n || x } = { x | M || x } ) | 
						
							| 76 | 74 75 | eqeq12d |  |-  ( n = M -> ( { x e. ZZ | n || x } = { x | n || x } <-> { x e. ZZ | M || x } = { x | M || x } ) ) | 
						
							| 77 |  | simpr |  |-  ( ( y e. ZZ /\ n || y ) -> n || y ) | 
						
							| 78 |  | dvdszrcl |  |-  ( n || y -> ( n e. ZZ /\ y e. ZZ ) ) | 
						
							| 79 | 78 | simprd |  |-  ( n || y -> y e. ZZ ) | 
						
							| 80 | 79 | ancri |  |-  ( n || y -> ( y e. ZZ /\ n || y ) ) | 
						
							| 81 | 77 80 | impbii |  |-  ( ( y e. ZZ /\ n || y ) <-> n || y ) | 
						
							| 82 |  | breq2 |  |-  ( x = y -> ( n || x <-> n || y ) ) | 
						
							| 83 | 82 | elrab |  |-  ( y e. { x e. ZZ | n || x } <-> ( y e. ZZ /\ n || y ) ) | 
						
							| 84 |  | vex |  |-  y e. _V | 
						
							| 85 | 84 82 | elab |  |-  ( y e. { x | n || x } <-> n || y ) | 
						
							| 86 | 81 83 85 | 3bitr4i |  |-  ( y e. { x e. ZZ | n || x } <-> y e. { x | n || x } ) | 
						
							| 87 | 86 | eqriv |  |-  { x e. ZZ | n || x } = { x | n || x } | 
						
							| 88 | 76 87 | vtoclg |  |-  ( M e. ZZ -> { x e. ZZ | M || x } = { x | M || x } ) | 
						
							| 89 | 88 | adantr |  |-  ( ( M e. ZZ /\ N e. V ) -> { x e. ZZ | M || x } = { x | M || x } ) | 
						
							| 90 |  | breq1 |  |-  ( n = N -> ( n || x <-> N || x ) ) | 
						
							| 91 | 90 | rabbidv |  |-  ( n = N -> { x e. ZZ | n || x } = { x e. ZZ | N || x } ) | 
						
							| 92 | 90 | abbidv |  |-  ( n = N -> { x | n || x } = { x | N || x } ) | 
						
							| 93 | 91 92 | eqeq12d |  |-  ( n = N -> ( { x e. ZZ | n || x } = { x | n || x } <-> { x e. ZZ | N || x } = { x | N || x } ) ) | 
						
							| 94 | 93 87 | vtoclg |  |-  ( N e. V -> { x e. ZZ | N || x } = { x | N || x } ) | 
						
							| 95 | 94 | adantl |  |-  ( ( M e. ZZ /\ N e. V ) -> { x e. ZZ | N || x } = { x | N || x } ) | 
						
							| 96 | 89 95 | sseq12d |  |-  ( ( M e. ZZ /\ N e. V ) -> ( { x e. ZZ | M || x } C_ { x e. ZZ | N || x } <-> { x | M || x } C_ { x | N || x } ) ) | 
						
							| 97 | 72 96 | imbitrid |  |-  ( ( M e. ZZ /\ N e. V ) -> ( N || M -> { x | M || x } C_ { x | N || x } ) ) | 
						
							| 98 | 9 15 | sseq12i |  |-  ( ( || " { M } ) C_ ( || " { N } ) <-> { x | M || x } C_ { x | N || x } ) | 
						
							| 99 | 97 98 | imbitrrdi |  |-  ( ( M e. ZZ /\ N e. V ) -> ( N || M -> ( || " { M } ) C_ ( || " { N } ) ) ) | 
						
							| 100 | 19 99 | impbid |  |-  ( ( M e. ZZ /\ N e. V ) -> ( ( || " { M } ) C_ ( || " { N } ) <-> N || M ) ) | 
						
							| 101 | 1 2 100 | syl2anc |  |-  ( ph -> ( ( || " { M } ) C_ ( || " { N } ) <-> N || M ) ) |