Step |
Hyp |
Ref |
Expression |
1 |
|
nzss.m |
|- ( ph -> M e. ZZ ) |
2 |
|
nzss.n |
|- ( ph -> N e. V ) |
3 |
|
iddvds |
|- ( M e. ZZ -> M || M ) |
4 |
|
breq2 |
|- ( x = M -> ( M || x <-> M || M ) ) |
5 |
4
|
elabg |
|- ( M e. ZZ -> ( M e. { x | M || x } <-> M || M ) ) |
6 |
3 5
|
mpbird |
|- ( M e. ZZ -> M e. { x | M || x } ) |
7 |
|
reldvds |
|- Rel || |
8 |
|
relimasn |
|- ( Rel || -> ( || " { M } ) = { x | M || x } ) |
9 |
7 8
|
ax-mp |
|- ( || " { M } ) = { x | M || x } |
10 |
6 9
|
eleqtrrdi |
|- ( M e. ZZ -> M e. ( || " { M } ) ) |
11 |
|
ssel |
|- ( ( || " { M } ) C_ ( || " { N } ) -> ( M e. ( || " { M } ) -> M e. ( || " { N } ) ) ) |
12 |
10 11
|
syl5 |
|- ( ( || " { M } ) C_ ( || " { N } ) -> ( M e. ZZ -> M e. ( || " { N } ) ) ) |
13 |
|
breq2 |
|- ( x = M -> ( N || x <-> N || M ) ) |
14 |
|
relimasn |
|- ( Rel || -> ( || " { N } ) = { x | N || x } ) |
15 |
7 14
|
ax-mp |
|- ( || " { N } ) = { x | N || x } |
16 |
13 15
|
elab2g |
|- ( M e. ZZ -> ( M e. ( || " { N } ) <-> N || M ) ) |
17 |
12 16
|
mpbidi |
|- ( ( || " { M } ) C_ ( || " { N } ) -> ( M e. ZZ -> N || M ) ) |
18 |
17
|
com12 |
|- ( M e. ZZ -> ( ( || " { M } ) C_ ( || " { N } ) -> N || M ) ) |
19 |
18
|
adantr |
|- ( ( M e. ZZ /\ N e. V ) -> ( ( || " { M } ) C_ ( || " { N } ) -> N || M ) ) |
20 |
|
ssid |
|- { 0 } C_ { 0 } |
21 |
|
simpl |
|- ( ( N || M /\ N = 0 ) -> N || M ) |
22 |
|
breq1 |
|- ( N = 0 -> ( N || M <-> 0 || M ) ) |
23 |
|
dvdszrcl |
|- ( N || M -> ( N e. ZZ /\ M e. ZZ ) ) |
24 |
23
|
simprd |
|- ( N || M -> M e. ZZ ) |
25 |
|
0dvds |
|- ( M e. ZZ -> ( 0 || M <-> M = 0 ) ) |
26 |
24 25
|
syl |
|- ( N || M -> ( 0 || M <-> M = 0 ) ) |
27 |
22 26
|
sylan9bbr |
|- ( ( N || M /\ N = 0 ) -> ( N || M <-> M = 0 ) ) |
28 |
21 27
|
mpbid |
|- ( ( N || M /\ N = 0 ) -> M = 0 ) |
29 |
28
|
breq1d |
|- ( ( N || M /\ N = 0 ) -> ( M || x <-> 0 || x ) ) |
30 |
|
0dvds |
|- ( x e. ZZ -> ( 0 || x <-> x = 0 ) ) |
31 |
29 30
|
sylan9bb |
|- ( ( ( N || M /\ N = 0 ) /\ x e. ZZ ) -> ( M || x <-> x = 0 ) ) |
32 |
31
|
rabbidva |
|- ( ( N || M /\ N = 0 ) -> { x e. ZZ | M || x } = { x e. ZZ | x = 0 } ) |
33 |
|
0z |
|- 0 e. ZZ |
34 |
|
rabsn |
|- ( 0 e. ZZ -> { x e. ZZ | x = 0 } = { 0 } ) |
35 |
33 34
|
ax-mp |
|- { x e. ZZ | x = 0 } = { 0 } |
36 |
32 35
|
eqtrdi |
|- ( ( N || M /\ N = 0 ) -> { x e. ZZ | M || x } = { 0 } ) |
37 |
|
breq1 |
|- ( N = 0 -> ( N || x <-> 0 || x ) ) |
38 |
37
|
rabbidv |
|- ( N = 0 -> { x e. ZZ | N || x } = { x e. ZZ | 0 || x } ) |
39 |
30
|
rabbiia |
|- { x e. ZZ | 0 || x } = { x e. ZZ | x = 0 } |
40 |
39 35
|
eqtri |
|- { x e. ZZ | 0 || x } = { 0 } |
41 |
38 40
|
eqtrdi |
|- ( N = 0 -> { x e. ZZ | N || x } = { 0 } ) |
42 |
41
|
adantl |
|- ( ( N || M /\ N = 0 ) -> { x e. ZZ | N || x } = { 0 } ) |
43 |
36 42
|
sseq12d |
|- ( ( N || M /\ N = 0 ) -> ( { x e. ZZ | M || x } C_ { x e. ZZ | N || x } <-> { 0 } C_ { 0 } ) ) |
44 |
20 43
|
mpbiri |
|- ( ( N || M /\ N = 0 ) -> { x e. ZZ | M || x } C_ { x e. ZZ | N || x } ) |
45 |
24
|
zcnd |
|- ( N || M -> M e. CC ) |
46 |
45
|
ad2antrr |
|- ( ( ( N || M /\ N =/= 0 ) /\ n e. ZZ ) -> M e. CC ) |
47 |
23
|
simpld |
|- ( N || M -> N e. ZZ ) |
48 |
47
|
zcnd |
|- ( N || M -> N e. CC ) |
49 |
48
|
ad2antrr |
|- ( ( ( N || M /\ N =/= 0 ) /\ n e. ZZ ) -> N e. CC ) |
50 |
|
simplr |
|- ( ( ( N || M /\ N =/= 0 ) /\ n e. ZZ ) -> N =/= 0 ) |
51 |
46 49 50
|
divcan2d |
|- ( ( ( N || M /\ N =/= 0 ) /\ n e. ZZ ) -> ( N x. ( M / N ) ) = M ) |
52 |
51
|
breq1d |
|- ( ( ( N || M /\ N =/= 0 ) /\ n e. ZZ ) -> ( ( N x. ( M / N ) ) || n <-> M || n ) ) |
53 |
47
|
adantr |
|- ( ( N || M /\ N =/= 0 ) -> N e. ZZ ) |
54 |
|
dvdsval2 |
|- ( ( N e. ZZ /\ N =/= 0 /\ M e. ZZ ) -> ( N || M <-> ( M / N ) e. ZZ ) ) |
55 |
54
|
biimpd |
|- ( ( N e. ZZ /\ N =/= 0 /\ M e. ZZ ) -> ( N || M -> ( M / N ) e. ZZ ) ) |
56 |
55
|
3com23 |
|- ( ( N e. ZZ /\ M e. ZZ /\ N =/= 0 ) -> ( N || M -> ( M / N ) e. ZZ ) ) |
57 |
56
|
3expa |
|- ( ( ( N e. ZZ /\ M e. ZZ ) /\ N =/= 0 ) -> ( N || M -> ( M / N ) e. ZZ ) ) |
58 |
23 57
|
sylan |
|- ( ( N || M /\ N =/= 0 ) -> ( N || M -> ( M / N ) e. ZZ ) ) |
59 |
58
|
imp |
|- ( ( ( N || M /\ N =/= 0 ) /\ N || M ) -> ( M / N ) e. ZZ ) |
60 |
59
|
anabss1 |
|- ( ( N || M /\ N =/= 0 ) -> ( M / N ) e. ZZ ) |
61 |
53 60
|
jca |
|- ( ( N || M /\ N =/= 0 ) -> ( N e. ZZ /\ ( M / N ) e. ZZ ) ) |
62 |
|
muldvds1 |
|- ( ( N e. ZZ /\ ( M / N ) e. ZZ /\ n e. ZZ ) -> ( ( N x. ( M / N ) ) || n -> N || n ) ) |
63 |
62
|
3expa |
|- ( ( ( N e. ZZ /\ ( M / N ) e. ZZ ) /\ n e. ZZ ) -> ( ( N x. ( M / N ) ) || n -> N || n ) ) |
64 |
61 63
|
sylan |
|- ( ( ( N || M /\ N =/= 0 ) /\ n e. ZZ ) -> ( ( N x. ( M / N ) ) || n -> N || n ) ) |
65 |
52 64
|
sylbird |
|- ( ( ( N || M /\ N =/= 0 ) /\ n e. ZZ ) -> ( M || n -> N || n ) ) |
66 |
65
|
ss2rabdv |
|- ( ( N || M /\ N =/= 0 ) -> { n e. ZZ | M || n } C_ { n e. ZZ | N || n } ) |
67 |
|
breq2 |
|- ( n = x -> ( M || n <-> M || x ) ) |
68 |
67
|
cbvrabv |
|- { n e. ZZ | M || n } = { x e. ZZ | M || x } |
69 |
|
breq2 |
|- ( n = x -> ( N || n <-> N || x ) ) |
70 |
69
|
cbvrabv |
|- { n e. ZZ | N || n } = { x e. ZZ | N || x } |
71 |
66 68 70
|
3sstr3g |
|- ( ( N || M /\ N =/= 0 ) -> { x e. ZZ | M || x } C_ { x e. ZZ | N || x } ) |
72 |
44 71
|
pm2.61dane |
|- ( N || M -> { x e. ZZ | M || x } C_ { x e. ZZ | N || x } ) |
73 |
|
breq1 |
|- ( n = M -> ( n || x <-> M || x ) ) |
74 |
73
|
rabbidv |
|- ( n = M -> { x e. ZZ | n || x } = { x e. ZZ | M || x } ) |
75 |
73
|
abbidv |
|- ( n = M -> { x | n || x } = { x | M || x } ) |
76 |
74 75
|
eqeq12d |
|- ( n = M -> ( { x e. ZZ | n || x } = { x | n || x } <-> { x e. ZZ | M || x } = { x | M || x } ) ) |
77 |
|
simpr |
|- ( ( y e. ZZ /\ n || y ) -> n || y ) |
78 |
|
dvdszrcl |
|- ( n || y -> ( n e. ZZ /\ y e. ZZ ) ) |
79 |
78
|
simprd |
|- ( n || y -> y e. ZZ ) |
80 |
79
|
ancri |
|- ( n || y -> ( y e. ZZ /\ n || y ) ) |
81 |
77 80
|
impbii |
|- ( ( y e. ZZ /\ n || y ) <-> n || y ) |
82 |
|
breq2 |
|- ( x = y -> ( n || x <-> n || y ) ) |
83 |
82
|
elrab |
|- ( y e. { x e. ZZ | n || x } <-> ( y e. ZZ /\ n || y ) ) |
84 |
|
vex |
|- y e. _V |
85 |
84 82
|
elab |
|- ( y e. { x | n || x } <-> n || y ) |
86 |
81 83 85
|
3bitr4i |
|- ( y e. { x e. ZZ | n || x } <-> y e. { x | n || x } ) |
87 |
86
|
eqriv |
|- { x e. ZZ | n || x } = { x | n || x } |
88 |
76 87
|
vtoclg |
|- ( M e. ZZ -> { x e. ZZ | M || x } = { x | M || x } ) |
89 |
88
|
adantr |
|- ( ( M e. ZZ /\ N e. V ) -> { x e. ZZ | M || x } = { x | M || x } ) |
90 |
|
breq1 |
|- ( n = N -> ( n || x <-> N || x ) ) |
91 |
90
|
rabbidv |
|- ( n = N -> { x e. ZZ | n || x } = { x e. ZZ | N || x } ) |
92 |
90
|
abbidv |
|- ( n = N -> { x | n || x } = { x | N || x } ) |
93 |
91 92
|
eqeq12d |
|- ( n = N -> ( { x e. ZZ | n || x } = { x | n || x } <-> { x e. ZZ | N || x } = { x | N || x } ) ) |
94 |
93 87
|
vtoclg |
|- ( N e. V -> { x e. ZZ | N || x } = { x | N || x } ) |
95 |
94
|
adantl |
|- ( ( M e. ZZ /\ N e. V ) -> { x e. ZZ | N || x } = { x | N || x } ) |
96 |
89 95
|
sseq12d |
|- ( ( M e. ZZ /\ N e. V ) -> ( { x e. ZZ | M || x } C_ { x e. ZZ | N || x } <-> { x | M || x } C_ { x | N || x } ) ) |
97 |
72 96
|
syl5ib |
|- ( ( M e. ZZ /\ N e. V ) -> ( N || M -> { x | M || x } C_ { x | N || x } ) ) |
98 |
9 15
|
sseq12i |
|- ( ( || " { M } ) C_ ( || " { N } ) <-> { x | M || x } C_ { x | N || x } ) |
99 |
97 98
|
syl6ibr |
|- ( ( M e. ZZ /\ N e. V ) -> ( N || M -> ( || " { M } ) C_ ( || " { N } ) ) ) |
100 |
19 99
|
impbid |
|- ( ( M e. ZZ /\ N e. V ) -> ( ( || " { M } ) C_ ( || " { N } ) <-> N || M ) ) |
101 |
1 2 100
|
syl2anc |
|- ( ph -> ( ( || " { M } ) C_ ( || " { N } ) <-> N || M ) ) |