| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nzprmdif.m |  |-  ( ph -> M e. Prime ) | 
						
							| 2 |  | nzprmdif.n |  |-  ( ph -> N e. Prime ) | 
						
							| 3 |  | nzprmdif.ne |  |-  ( ph -> M =/= N ) | 
						
							| 4 |  | difin |  |-  ( ( || " { M } ) \ ( ( || " { M } ) i^i ( || " { N } ) ) ) = ( ( || " { M } ) \ ( || " { N } ) ) | 
						
							| 5 |  | prmz |  |-  ( M e. Prime -> M e. ZZ ) | 
						
							| 6 | 1 5 | syl |  |-  ( ph -> M e. ZZ ) | 
						
							| 7 |  | prmz |  |-  ( N e. Prime -> N e. ZZ ) | 
						
							| 8 | 2 7 | syl |  |-  ( ph -> N e. ZZ ) | 
						
							| 9 | 6 8 | nzin |  |-  ( ph -> ( ( || " { M } ) i^i ( || " { N } ) ) = ( || " { ( M lcm N ) } ) ) | 
						
							| 10 | 9 | difeq2d |  |-  ( ph -> ( ( || " { M } ) \ ( ( || " { M } ) i^i ( || " { N } ) ) ) = ( ( || " { M } ) \ ( || " { ( M lcm N ) } ) ) ) | 
						
							| 11 | 4 10 | eqtr3id |  |-  ( ph -> ( ( || " { M } ) \ ( || " { N } ) ) = ( ( || " { M } ) \ ( || " { ( M lcm N ) } ) ) ) | 
						
							| 12 |  | lcmgcd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) | 
						
							| 13 | 6 8 12 | syl2anc |  |-  ( ph -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) | 
						
							| 14 |  | prmrp |  |-  ( ( M e. Prime /\ N e. Prime ) -> ( ( M gcd N ) = 1 <-> M =/= N ) ) | 
						
							| 15 | 1 2 14 | syl2anc |  |-  ( ph -> ( ( M gcd N ) = 1 <-> M =/= N ) ) | 
						
							| 16 | 3 15 | mpbird |  |-  ( ph -> ( M gcd N ) = 1 ) | 
						
							| 17 | 16 | oveq2d |  |-  ( ph -> ( ( M lcm N ) x. ( M gcd N ) ) = ( ( M lcm N ) x. 1 ) ) | 
						
							| 18 |  | lcmcl |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) | 
						
							| 19 | 6 8 18 | syl2anc |  |-  ( ph -> ( M lcm N ) e. NN0 ) | 
						
							| 20 | 19 | nn0cnd |  |-  ( ph -> ( M lcm N ) e. CC ) | 
						
							| 21 | 20 | mulridd |  |-  ( ph -> ( ( M lcm N ) x. 1 ) = ( M lcm N ) ) | 
						
							| 22 | 17 21 | eqtrd |  |-  ( ph -> ( ( M lcm N ) x. ( M gcd N ) ) = ( M lcm N ) ) | 
						
							| 23 | 6 | zred |  |-  ( ph -> M e. RR ) | 
						
							| 24 | 8 | zred |  |-  ( ph -> N e. RR ) | 
						
							| 25 | 23 24 | remulcld |  |-  ( ph -> ( M x. N ) e. RR ) | 
						
							| 26 |  | prmnn |  |-  ( M e. Prime -> M e. NN ) | 
						
							| 27 | 1 26 | syl |  |-  ( ph -> M e. NN ) | 
						
							| 28 | 27 | nnnn0d |  |-  ( ph -> M e. NN0 ) | 
						
							| 29 | 28 | nn0ge0d |  |-  ( ph -> 0 <_ M ) | 
						
							| 30 |  | prmnn |  |-  ( N e. Prime -> N e. NN ) | 
						
							| 31 | 2 30 | syl |  |-  ( ph -> N e. NN ) | 
						
							| 32 | 31 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 33 | 32 | nn0ge0d |  |-  ( ph -> 0 <_ N ) | 
						
							| 34 | 23 24 29 33 | mulge0d |  |-  ( ph -> 0 <_ ( M x. N ) ) | 
						
							| 35 | 25 34 | absidd |  |-  ( ph -> ( abs ` ( M x. N ) ) = ( M x. N ) ) | 
						
							| 36 | 13 22 35 | 3eqtr3d |  |-  ( ph -> ( M lcm N ) = ( M x. N ) ) | 
						
							| 37 | 36 | sneqd |  |-  ( ph -> { ( M lcm N ) } = { ( M x. N ) } ) | 
						
							| 38 | 37 | imaeq2d |  |-  ( ph -> ( || " { ( M lcm N ) } ) = ( || " { ( M x. N ) } ) ) | 
						
							| 39 | 38 | difeq2d |  |-  ( ph -> ( ( || " { M } ) \ ( || " { ( M lcm N ) } ) ) = ( ( || " { M } ) \ ( || " { ( M x. N ) } ) ) ) | 
						
							| 40 | 11 39 | eqtrd |  |-  ( ph -> ( ( || " { M } ) \ ( || " { N } ) ) = ( ( || " { M } ) \ ( || " { ( M x. N ) } ) ) ) |