Step |
Hyp |
Ref |
Expression |
1 |
|
nzprmdif.m |
|- ( ph -> M e. Prime ) |
2 |
|
nzprmdif.n |
|- ( ph -> N e. Prime ) |
3 |
|
nzprmdif.ne |
|- ( ph -> M =/= N ) |
4 |
|
difin |
|- ( ( || " { M } ) \ ( ( || " { M } ) i^i ( || " { N } ) ) ) = ( ( || " { M } ) \ ( || " { N } ) ) |
5 |
|
prmz |
|- ( M e. Prime -> M e. ZZ ) |
6 |
1 5
|
syl |
|- ( ph -> M e. ZZ ) |
7 |
|
prmz |
|- ( N e. Prime -> N e. ZZ ) |
8 |
2 7
|
syl |
|- ( ph -> N e. ZZ ) |
9 |
6 8
|
nzin |
|- ( ph -> ( ( || " { M } ) i^i ( || " { N } ) ) = ( || " { ( M lcm N ) } ) ) |
10 |
9
|
difeq2d |
|- ( ph -> ( ( || " { M } ) \ ( ( || " { M } ) i^i ( || " { N } ) ) ) = ( ( || " { M } ) \ ( || " { ( M lcm N ) } ) ) ) |
11 |
4 10
|
eqtr3id |
|- ( ph -> ( ( || " { M } ) \ ( || " { N } ) ) = ( ( || " { M } ) \ ( || " { ( M lcm N ) } ) ) ) |
12 |
|
lcmgcd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) |
13 |
6 8 12
|
syl2anc |
|- ( ph -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) |
14 |
|
prmrp |
|- ( ( M e. Prime /\ N e. Prime ) -> ( ( M gcd N ) = 1 <-> M =/= N ) ) |
15 |
1 2 14
|
syl2anc |
|- ( ph -> ( ( M gcd N ) = 1 <-> M =/= N ) ) |
16 |
3 15
|
mpbird |
|- ( ph -> ( M gcd N ) = 1 ) |
17 |
16
|
oveq2d |
|- ( ph -> ( ( M lcm N ) x. ( M gcd N ) ) = ( ( M lcm N ) x. 1 ) ) |
18 |
|
lcmcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |
19 |
6 8 18
|
syl2anc |
|- ( ph -> ( M lcm N ) e. NN0 ) |
20 |
19
|
nn0cnd |
|- ( ph -> ( M lcm N ) e. CC ) |
21 |
20
|
mulid1d |
|- ( ph -> ( ( M lcm N ) x. 1 ) = ( M lcm N ) ) |
22 |
17 21
|
eqtrd |
|- ( ph -> ( ( M lcm N ) x. ( M gcd N ) ) = ( M lcm N ) ) |
23 |
6
|
zred |
|- ( ph -> M e. RR ) |
24 |
8
|
zred |
|- ( ph -> N e. RR ) |
25 |
23 24
|
remulcld |
|- ( ph -> ( M x. N ) e. RR ) |
26 |
|
prmnn |
|- ( M e. Prime -> M e. NN ) |
27 |
1 26
|
syl |
|- ( ph -> M e. NN ) |
28 |
27
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
29 |
28
|
nn0ge0d |
|- ( ph -> 0 <_ M ) |
30 |
|
prmnn |
|- ( N e. Prime -> N e. NN ) |
31 |
2 30
|
syl |
|- ( ph -> N e. NN ) |
32 |
31
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
33 |
32
|
nn0ge0d |
|- ( ph -> 0 <_ N ) |
34 |
23 24 29 33
|
mulge0d |
|- ( ph -> 0 <_ ( M x. N ) ) |
35 |
25 34
|
absidd |
|- ( ph -> ( abs ` ( M x. N ) ) = ( M x. N ) ) |
36 |
13 22 35
|
3eqtr3d |
|- ( ph -> ( M lcm N ) = ( M x. N ) ) |
37 |
36
|
sneqd |
|- ( ph -> { ( M lcm N ) } = { ( M x. N ) } ) |
38 |
37
|
imaeq2d |
|- ( ph -> ( || " { ( M lcm N ) } ) = ( || " { ( M x. N ) } ) ) |
39 |
38
|
difeq2d |
|- ( ph -> ( ( || " { M } ) \ ( || " { ( M lcm N ) } ) ) = ( ( || " { M } ) \ ( || " { ( M x. N ) } ) ) ) |
40 |
11 39
|
eqtrd |
|- ( ph -> ( ( || " { M } ) \ ( || " { N } ) ) = ( ( || " { M } ) \ ( || " { ( M x. N ) } ) ) ) |