| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashnzfz.n |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | hashnzfz.j |  |-  ( ph -> J e. ZZ ) | 
						
							| 3 |  | hashnzfz.k |  |-  ( ph -> K e. ( ZZ>= ` ( J - 1 ) ) ) | 
						
							| 4 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 5 | 1 2 3 4 | hashdvds |  |-  ( ph -> ( # ` { x e. ( J ... K ) | N || ( x - 0 ) } ) = ( ( |_ ` ( ( K - 0 ) / N ) ) - ( |_ ` ( ( ( J - 1 ) - 0 ) / N ) ) ) ) | 
						
							| 6 |  | elfzelz |  |-  ( x e. ( J ... K ) -> x e. ZZ ) | 
						
							| 7 | 6 | zcnd |  |-  ( x e. ( J ... K ) -> x e. CC ) | 
						
							| 8 | 7 | subid1d |  |-  ( x e. ( J ... K ) -> ( x - 0 ) = x ) | 
						
							| 9 | 8 | breq2d |  |-  ( x e. ( J ... K ) -> ( N || ( x - 0 ) <-> N || x ) ) | 
						
							| 10 | 9 | rabbiia |  |-  { x e. ( J ... K ) | N || ( x - 0 ) } = { x e. ( J ... K ) | N || x } | 
						
							| 11 |  | dfrab3 |  |-  { x e. ( J ... K ) | N || x } = ( ( J ... K ) i^i { x | N || x } ) | 
						
							| 12 |  | reldvds |  |-  Rel || | 
						
							| 13 |  | relimasn |  |-  ( Rel || -> ( || " { N } ) = { x | N || x } ) | 
						
							| 14 | 12 13 | ax-mp |  |-  ( || " { N } ) = { x | N || x } | 
						
							| 15 | 14 | ineq2i |  |-  ( ( J ... K ) i^i ( || " { N } ) ) = ( ( J ... K ) i^i { x | N || x } ) | 
						
							| 16 |  | incom |  |-  ( ( J ... K ) i^i ( || " { N } ) ) = ( ( || " { N } ) i^i ( J ... K ) ) | 
						
							| 17 | 15 16 | eqtr3i |  |-  ( ( J ... K ) i^i { x | N || x } ) = ( ( || " { N } ) i^i ( J ... K ) ) | 
						
							| 18 | 10 11 17 | 3eqtri |  |-  { x e. ( J ... K ) | N || ( x - 0 ) } = ( ( || " { N } ) i^i ( J ... K ) ) | 
						
							| 19 | 18 | fveq2i |  |-  ( # ` { x e. ( J ... K ) | N || ( x - 0 ) } ) = ( # ` ( ( || " { N } ) i^i ( J ... K ) ) ) | 
						
							| 20 | 19 | a1i |  |-  ( ph -> ( # ` { x e. ( J ... K ) | N || ( x - 0 ) } ) = ( # ` ( ( || " { N } ) i^i ( J ... K ) ) ) ) | 
						
							| 21 |  | eluzelz |  |-  ( K e. ( ZZ>= ` ( J - 1 ) ) -> K e. ZZ ) | 
						
							| 22 | 3 21 | syl |  |-  ( ph -> K e. ZZ ) | 
						
							| 23 | 22 | zcnd |  |-  ( ph -> K e. CC ) | 
						
							| 24 | 23 | subid1d |  |-  ( ph -> ( K - 0 ) = K ) | 
						
							| 25 | 24 | fvoveq1d |  |-  ( ph -> ( |_ ` ( ( K - 0 ) / N ) ) = ( |_ ` ( K / N ) ) ) | 
						
							| 26 |  | peano2zm |  |-  ( J e. ZZ -> ( J - 1 ) e. ZZ ) | 
						
							| 27 | 2 26 | syl |  |-  ( ph -> ( J - 1 ) e. ZZ ) | 
						
							| 28 | 27 | zcnd |  |-  ( ph -> ( J - 1 ) e. CC ) | 
						
							| 29 | 28 | subid1d |  |-  ( ph -> ( ( J - 1 ) - 0 ) = ( J - 1 ) ) | 
						
							| 30 | 29 | fvoveq1d |  |-  ( ph -> ( |_ ` ( ( ( J - 1 ) - 0 ) / N ) ) = ( |_ ` ( ( J - 1 ) / N ) ) ) | 
						
							| 31 | 25 30 | oveq12d |  |-  ( ph -> ( ( |_ ` ( ( K - 0 ) / N ) ) - ( |_ ` ( ( ( J - 1 ) - 0 ) / N ) ) ) = ( ( |_ ` ( K / N ) ) - ( |_ ` ( ( J - 1 ) / N ) ) ) ) | 
						
							| 32 | 5 20 31 | 3eqtr3d |  |-  ( ph -> ( # ` ( ( || " { N } ) i^i ( J ... K ) ) ) = ( ( |_ ` ( K / N ) ) - ( |_ ` ( ( J - 1 ) / N ) ) ) ) |