Step |
Hyp |
Ref |
Expression |
1 |
|
hashnzfz.n |
|- ( ph -> N e. NN ) |
2 |
|
hashnzfz.j |
|- ( ph -> J e. ZZ ) |
3 |
|
hashnzfz.k |
|- ( ph -> K e. ( ZZ>= ` ( J - 1 ) ) ) |
4 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
5 |
1 2 3 4
|
hashdvds |
|- ( ph -> ( # ` { x e. ( J ... K ) | N || ( x - 0 ) } ) = ( ( |_ ` ( ( K - 0 ) / N ) ) - ( |_ ` ( ( ( J - 1 ) - 0 ) / N ) ) ) ) |
6 |
|
elfzelz |
|- ( x e. ( J ... K ) -> x e. ZZ ) |
7 |
6
|
zcnd |
|- ( x e. ( J ... K ) -> x e. CC ) |
8 |
7
|
subid1d |
|- ( x e. ( J ... K ) -> ( x - 0 ) = x ) |
9 |
8
|
breq2d |
|- ( x e. ( J ... K ) -> ( N || ( x - 0 ) <-> N || x ) ) |
10 |
9
|
rabbiia |
|- { x e. ( J ... K ) | N || ( x - 0 ) } = { x e. ( J ... K ) | N || x } |
11 |
|
dfrab3 |
|- { x e. ( J ... K ) | N || x } = ( ( J ... K ) i^i { x | N || x } ) |
12 |
|
reldvds |
|- Rel || |
13 |
|
relimasn |
|- ( Rel || -> ( || " { N } ) = { x | N || x } ) |
14 |
12 13
|
ax-mp |
|- ( || " { N } ) = { x | N || x } |
15 |
14
|
ineq2i |
|- ( ( J ... K ) i^i ( || " { N } ) ) = ( ( J ... K ) i^i { x | N || x } ) |
16 |
|
incom |
|- ( ( J ... K ) i^i ( || " { N } ) ) = ( ( || " { N } ) i^i ( J ... K ) ) |
17 |
15 16
|
eqtr3i |
|- ( ( J ... K ) i^i { x | N || x } ) = ( ( || " { N } ) i^i ( J ... K ) ) |
18 |
10 11 17
|
3eqtri |
|- { x e. ( J ... K ) | N || ( x - 0 ) } = ( ( || " { N } ) i^i ( J ... K ) ) |
19 |
18
|
fveq2i |
|- ( # ` { x e. ( J ... K ) | N || ( x - 0 ) } ) = ( # ` ( ( || " { N } ) i^i ( J ... K ) ) ) |
20 |
19
|
a1i |
|- ( ph -> ( # ` { x e. ( J ... K ) | N || ( x - 0 ) } ) = ( # ` ( ( || " { N } ) i^i ( J ... K ) ) ) ) |
21 |
|
eluzelz |
|- ( K e. ( ZZ>= ` ( J - 1 ) ) -> K e. ZZ ) |
22 |
3 21
|
syl |
|- ( ph -> K e. ZZ ) |
23 |
22
|
zcnd |
|- ( ph -> K e. CC ) |
24 |
23
|
subid1d |
|- ( ph -> ( K - 0 ) = K ) |
25 |
24
|
fvoveq1d |
|- ( ph -> ( |_ ` ( ( K - 0 ) / N ) ) = ( |_ ` ( K / N ) ) ) |
26 |
|
peano2zm |
|- ( J e. ZZ -> ( J - 1 ) e. ZZ ) |
27 |
2 26
|
syl |
|- ( ph -> ( J - 1 ) e. ZZ ) |
28 |
27
|
zcnd |
|- ( ph -> ( J - 1 ) e. CC ) |
29 |
28
|
subid1d |
|- ( ph -> ( ( J - 1 ) - 0 ) = ( J - 1 ) ) |
30 |
29
|
fvoveq1d |
|- ( ph -> ( |_ ` ( ( ( J - 1 ) - 0 ) / N ) ) = ( |_ ` ( ( J - 1 ) / N ) ) ) |
31 |
25 30
|
oveq12d |
|- ( ph -> ( ( |_ ` ( ( K - 0 ) / N ) ) - ( |_ ` ( ( ( J - 1 ) - 0 ) / N ) ) ) = ( ( |_ ` ( K / N ) ) - ( |_ ` ( ( J - 1 ) / N ) ) ) ) |
32 |
5 20 31
|
3eqtr3d |
|- ( ph -> ( # ` ( ( || " { N } ) i^i ( J ... K ) ) ) = ( ( |_ ` ( K / N ) ) - ( |_ ` ( ( J - 1 ) / N ) ) ) ) |