| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashnzfz2.n |  |-  ( ph -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 2 |  | hashnzfz2.k |  |-  ( ph -> K e. NN ) | 
						
							| 3 |  | 2nn |  |-  2 e. NN | 
						
							| 4 |  | uznnssnn |  |-  ( 2 e. NN -> ( ZZ>= ` 2 ) C_ NN ) | 
						
							| 5 | 3 4 | ax-mp |  |-  ( ZZ>= ` 2 ) C_ NN | 
						
							| 6 | 5 1 | sselid |  |-  ( ph -> N e. NN ) | 
						
							| 7 |  | 2z |  |-  2 e. ZZ | 
						
							| 8 | 7 | a1i |  |-  ( ph -> 2 e. ZZ ) | 
						
							| 9 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 10 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 11 | 10 | fveq2i |  |-  ( ZZ>= ` ( 2 - 1 ) ) = ( ZZ>= ` 1 ) | 
						
							| 12 | 9 11 | eqtr4i |  |-  NN = ( ZZ>= ` ( 2 - 1 ) ) | 
						
							| 13 | 2 12 | eleqtrdi |  |-  ( ph -> K e. ( ZZ>= ` ( 2 - 1 ) ) ) | 
						
							| 14 | 6 8 13 | hashnzfz |  |-  ( ph -> ( # ` ( ( || " { N } ) i^i ( 2 ... K ) ) ) = ( ( |_ ` ( K / N ) ) - ( |_ ` ( ( 2 - 1 ) / N ) ) ) ) | 
						
							| 15 | 10 | oveq1i |  |-  ( ( 2 - 1 ) / N ) = ( 1 / N ) | 
						
							| 16 | 15 | fveq2i |  |-  ( |_ ` ( ( 2 - 1 ) / N ) ) = ( |_ ` ( 1 / N ) ) | 
						
							| 17 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 18 | 6 | nnrecred |  |-  ( ph -> ( 1 / N ) e. RR ) | 
						
							| 19 | 6 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 20 | 6 | nngt0d |  |-  ( ph -> 0 < N ) | 
						
							| 21 | 19 20 | recgt0d |  |-  ( ph -> 0 < ( 1 / N ) ) | 
						
							| 22 | 17 18 21 | ltled |  |-  ( ph -> 0 <_ ( 1 / N ) ) | 
						
							| 23 |  | eluzle |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 <_ N ) | 
						
							| 24 | 1 23 | syl |  |-  ( ph -> 2 <_ N ) | 
						
							| 25 | 6 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 26 |  | zlem1lt |  |-  ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 <_ N <-> ( 2 - 1 ) < N ) ) | 
						
							| 27 | 7 25 26 | sylancr |  |-  ( ph -> ( 2 <_ N <-> ( 2 - 1 ) < N ) ) | 
						
							| 28 | 24 27 | mpbid |  |-  ( ph -> ( 2 - 1 ) < N ) | 
						
							| 29 | 10 28 | eqbrtrrid |  |-  ( ph -> 1 < N ) | 
						
							| 30 | 6 | nnrpd |  |-  ( ph -> N e. RR+ ) | 
						
							| 31 | 30 | recgt1d |  |-  ( ph -> ( 1 < N <-> ( 1 / N ) < 1 ) ) | 
						
							| 32 | 29 31 | mpbid |  |-  ( ph -> ( 1 / N ) < 1 ) | 
						
							| 33 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 34 | 32 33 | breqtrrdi |  |-  ( ph -> ( 1 / N ) < ( 0 + 1 ) ) | 
						
							| 35 |  | 0z |  |-  0 e. ZZ | 
						
							| 36 |  | flbi |  |-  ( ( ( 1 / N ) e. RR /\ 0 e. ZZ ) -> ( ( |_ ` ( 1 / N ) ) = 0 <-> ( 0 <_ ( 1 / N ) /\ ( 1 / N ) < ( 0 + 1 ) ) ) ) | 
						
							| 37 | 18 35 36 | sylancl |  |-  ( ph -> ( ( |_ ` ( 1 / N ) ) = 0 <-> ( 0 <_ ( 1 / N ) /\ ( 1 / N ) < ( 0 + 1 ) ) ) ) | 
						
							| 38 | 22 34 37 | mpbir2and |  |-  ( ph -> ( |_ ` ( 1 / N ) ) = 0 ) | 
						
							| 39 | 16 38 | eqtrid |  |-  ( ph -> ( |_ ` ( ( 2 - 1 ) / N ) ) = 0 ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ph -> ( ( |_ ` ( K / N ) ) - ( |_ ` ( ( 2 - 1 ) / N ) ) ) = ( ( |_ ` ( K / N ) ) - 0 ) ) | 
						
							| 41 | 2 | nnred |  |-  ( ph -> K e. RR ) | 
						
							| 42 | 41 6 | nndivred |  |-  ( ph -> ( K / N ) e. RR ) | 
						
							| 43 | 42 | flcld |  |-  ( ph -> ( |_ ` ( K / N ) ) e. ZZ ) | 
						
							| 44 | 43 | zcnd |  |-  ( ph -> ( |_ ` ( K / N ) ) e. CC ) | 
						
							| 45 | 44 | subid1d |  |-  ( ph -> ( ( |_ ` ( K / N ) ) - 0 ) = ( |_ ` ( K / N ) ) ) | 
						
							| 46 | 14 40 45 | 3eqtrd |  |-  ( ph -> ( # ` ( ( || " { N } ) i^i ( 2 ... K ) ) ) = ( |_ ` ( K / N ) ) ) |