Step |
Hyp |
Ref |
Expression |
1 |
|
hashnzfz2.n |
|- ( ph -> N e. ( ZZ>= ` 2 ) ) |
2 |
|
hashnzfz2.k |
|- ( ph -> K e. NN ) |
3 |
|
2nn |
|- 2 e. NN |
4 |
|
uznnssnn |
|- ( 2 e. NN -> ( ZZ>= ` 2 ) C_ NN ) |
5 |
3 4
|
ax-mp |
|- ( ZZ>= ` 2 ) C_ NN |
6 |
5 1
|
sselid |
|- ( ph -> N e. NN ) |
7 |
|
2z |
|- 2 e. ZZ |
8 |
7
|
a1i |
|- ( ph -> 2 e. ZZ ) |
9 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
10 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
11 |
10
|
fveq2i |
|- ( ZZ>= ` ( 2 - 1 ) ) = ( ZZ>= ` 1 ) |
12 |
9 11
|
eqtr4i |
|- NN = ( ZZ>= ` ( 2 - 1 ) ) |
13 |
2 12
|
eleqtrdi |
|- ( ph -> K e. ( ZZ>= ` ( 2 - 1 ) ) ) |
14 |
6 8 13
|
hashnzfz |
|- ( ph -> ( # ` ( ( || " { N } ) i^i ( 2 ... K ) ) ) = ( ( |_ ` ( K / N ) ) - ( |_ ` ( ( 2 - 1 ) / N ) ) ) ) |
15 |
10
|
oveq1i |
|- ( ( 2 - 1 ) / N ) = ( 1 / N ) |
16 |
15
|
fveq2i |
|- ( |_ ` ( ( 2 - 1 ) / N ) ) = ( |_ ` ( 1 / N ) ) |
17 |
|
0red |
|- ( ph -> 0 e. RR ) |
18 |
6
|
nnrecred |
|- ( ph -> ( 1 / N ) e. RR ) |
19 |
6
|
nnred |
|- ( ph -> N e. RR ) |
20 |
6
|
nngt0d |
|- ( ph -> 0 < N ) |
21 |
19 20
|
recgt0d |
|- ( ph -> 0 < ( 1 / N ) ) |
22 |
17 18 21
|
ltled |
|- ( ph -> 0 <_ ( 1 / N ) ) |
23 |
|
eluzle |
|- ( N e. ( ZZ>= ` 2 ) -> 2 <_ N ) |
24 |
1 23
|
syl |
|- ( ph -> 2 <_ N ) |
25 |
6
|
nnzd |
|- ( ph -> N e. ZZ ) |
26 |
|
zlem1lt |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 <_ N <-> ( 2 - 1 ) < N ) ) |
27 |
7 25 26
|
sylancr |
|- ( ph -> ( 2 <_ N <-> ( 2 - 1 ) < N ) ) |
28 |
24 27
|
mpbid |
|- ( ph -> ( 2 - 1 ) < N ) |
29 |
10 28
|
eqbrtrrid |
|- ( ph -> 1 < N ) |
30 |
6
|
nnrpd |
|- ( ph -> N e. RR+ ) |
31 |
30
|
recgt1d |
|- ( ph -> ( 1 < N <-> ( 1 / N ) < 1 ) ) |
32 |
29 31
|
mpbid |
|- ( ph -> ( 1 / N ) < 1 ) |
33 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
34 |
32 33
|
breqtrrdi |
|- ( ph -> ( 1 / N ) < ( 0 + 1 ) ) |
35 |
|
0z |
|- 0 e. ZZ |
36 |
|
flbi |
|- ( ( ( 1 / N ) e. RR /\ 0 e. ZZ ) -> ( ( |_ ` ( 1 / N ) ) = 0 <-> ( 0 <_ ( 1 / N ) /\ ( 1 / N ) < ( 0 + 1 ) ) ) ) |
37 |
18 35 36
|
sylancl |
|- ( ph -> ( ( |_ ` ( 1 / N ) ) = 0 <-> ( 0 <_ ( 1 / N ) /\ ( 1 / N ) < ( 0 + 1 ) ) ) ) |
38 |
22 34 37
|
mpbir2and |
|- ( ph -> ( |_ ` ( 1 / N ) ) = 0 ) |
39 |
16 38
|
syl5eq |
|- ( ph -> ( |_ ` ( ( 2 - 1 ) / N ) ) = 0 ) |
40 |
39
|
oveq2d |
|- ( ph -> ( ( |_ ` ( K / N ) ) - ( |_ ` ( ( 2 - 1 ) / N ) ) ) = ( ( |_ ` ( K / N ) ) - 0 ) ) |
41 |
2
|
nnred |
|- ( ph -> K e. RR ) |
42 |
41 6
|
nndivred |
|- ( ph -> ( K / N ) e. RR ) |
43 |
42
|
flcld |
|- ( ph -> ( |_ ` ( K / N ) ) e. ZZ ) |
44 |
43
|
zcnd |
|- ( ph -> ( |_ ` ( K / N ) ) e. CC ) |
45 |
44
|
subid1d |
|- ( ph -> ( ( |_ ` ( K / N ) ) - 0 ) = ( |_ ` ( K / N ) ) ) |
46 |
14 40 45
|
3eqtrd |
|- ( ph -> ( # ` ( ( || " { N } ) i^i ( 2 ... K ) ) ) = ( |_ ` ( K / N ) ) ) |