Step |
Hyp |
Ref |
Expression |
1 |
|
hashnzfzclim.m |
|- ( ph -> M e. NN ) |
2 |
|
hashnzfzclim.j |
|- ( ph -> J e. ZZ ) |
3 |
1
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` ( J - 1 ) ) ) -> M e. NN ) |
4 |
2
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` ( J - 1 ) ) ) -> J e. ZZ ) |
5 |
|
simpr |
|- ( ( ph /\ k e. ( ZZ>= ` ( J - 1 ) ) ) -> k e. ( ZZ>= ` ( J - 1 ) ) ) |
6 |
3 4 5
|
hashnzfz |
|- ( ( ph /\ k e. ( ZZ>= ` ( J - 1 ) ) ) -> ( # ` ( ( || " { M } ) i^i ( J ... k ) ) ) = ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) ) |
7 |
6
|
oveq1d |
|- ( ( ph /\ k e. ( ZZ>= ` ( J - 1 ) ) ) -> ( ( # ` ( ( || " { M } ) i^i ( J ... k ) ) ) / k ) = ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |
8 |
7
|
mpteq2dva |
|- ( ph -> ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( # ` ( ( || " { M } ) i^i ( J ... k ) ) ) / k ) ) = ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ) |
9 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
10 |
|
1z |
|- 1 e. ZZ |
11 |
10
|
a1i |
|- ( ph -> 1 e. ZZ ) |
12 |
1
|
nncnd |
|- ( ph -> M e. CC ) |
13 |
1
|
nnne0d |
|- ( ph -> M =/= 0 ) |
14 |
12 13
|
reccld |
|- ( ph -> ( 1 / M ) e. CC ) |
15 |
9
|
eqimss2i |
|- ( ZZ>= ` 1 ) C_ NN |
16 |
|
nnex |
|- NN e. _V |
17 |
15 16
|
climconst2 |
|- ( ( ( 1 / M ) e. CC /\ 1 e. ZZ ) -> ( NN X. { ( 1 / M ) } ) ~~> ( 1 / M ) ) |
18 |
14 10 17
|
sylancl |
|- ( ph -> ( NN X. { ( 1 / M ) } ) ~~> ( 1 / M ) ) |
19 |
16
|
mptex |
|- ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) e. _V |
20 |
19
|
a1i |
|- ( ph -> ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) e. _V ) |
21 |
|
ax-1cn |
|- 1 e. CC |
22 |
|
divcnv |
|- ( 1 e. CC -> ( k e. NN |-> ( 1 / k ) ) ~~> 0 ) |
23 |
21 22
|
mp1i |
|- ( ph -> ( k e. NN |-> ( 1 / k ) ) ~~> 0 ) |
24 |
|
ovex |
|- ( 1 / M ) e. _V |
25 |
24
|
fvconst2 |
|- ( x e. NN -> ( ( NN X. { ( 1 / M ) } ) ` x ) = ( 1 / M ) ) |
26 |
25
|
adantl |
|- ( ( ph /\ x e. NN ) -> ( ( NN X. { ( 1 / M ) } ) ` x ) = ( 1 / M ) ) |
27 |
14
|
adantr |
|- ( ( ph /\ x e. NN ) -> ( 1 / M ) e. CC ) |
28 |
26 27
|
eqeltrd |
|- ( ( ph /\ x e. NN ) -> ( ( NN X. { ( 1 / M ) } ) ` x ) e. CC ) |
29 |
|
eqidd |
|- ( ( ph /\ x e. NN ) -> ( k e. NN |-> ( 1 / k ) ) = ( k e. NN |-> ( 1 / k ) ) ) |
30 |
|
oveq2 |
|- ( k = x -> ( 1 / k ) = ( 1 / x ) ) |
31 |
30
|
adantl |
|- ( ( ( ph /\ x e. NN ) /\ k = x ) -> ( 1 / k ) = ( 1 / x ) ) |
32 |
|
simpr |
|- ( ( ph /\ x e. NN ) -> x e. NN ) |
33 |
|
ovexd |
|- ( ( ph /\ x e. NN ) -> ( 1 / x ) e. _V ) |
34 |
29 31 32 33
|
fvmptd |
|- ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( 1 / k ) ) ` x ) = ( 1 / x ) ) |
35 |
32
|
nnrecred |
|- ( ( ph /\ x e. NN ) -> ( 1 / x ) e. RR ) |
36 |
34 35
|
eqeltrd |
|- ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( 1 / k ) ) ` x ) e. RR ) |
37 |
36
|
recnd |
|- ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( 1 / k ) ) ` x ) e. CC ) |
38 |
|
eqidd |
|- ( ( ph /\ x e. NN ) -> ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) = ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) ) |
39 |
30
|
oveq2d |
|- ( k = x -> ( ( 1 / M ) - ( 1 / k ) ) = ( ( 1 / M ) - ( 1 / x ) ) ) |
40 |
39
|
adantl |
|- ( ( ( ph /\ x e. NN ) /\ k = x ) -> ( ( 1 / M ) - ( 1 / k ) ) = ( ( 1 / M ) - ( 1 / x ) ) ) |
41 |
|
ovexd |
|- ( ( ph /\ x e. NN ) -> ( ( 1 / M ) - ( 1 / x ) ) e. _V ) |
42 |
38 40 32 41
|
fvmptd |
|- ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) ` x ) = ( ( 1 / M ) - ( 1 / x ) ) ) |
43 |
26 34
|
oveq12d |
|- ( ( ph /\ x e. NN ) -> ( ( ( NN X. { ( 1 / M ) } ) ` x ) - ( ( k e. NN |-> ( 1 / k ) ) ` x ) ) = ( ( 1 / M ) - ( 1 / x ) ) ) |
44 |
42 43
|
eqtr4d |
|- ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) ` x ) = ( ( ( NN X. { ( 1 / M ) } ) ` x ) - ( ( k e. NN |-> ( 1 / k ) ) ` x ) ) ) |
45 |
9 11 18 20 23 28 37 44
|
climsub |
|- ( ph -> ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) ~~> ( ( 1 / M ) - 0 ) ) |
46 |
14
|
subid1d |
|- ( ph -> ( ( 1 / M ) - 0 ) = ( 1 / M ) ) |
47 |
45 46
|
breqtrd |
|- ( ph -> ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) ~~> ( 1 / M ) ) |
48 |
16
|
mptex |
|- ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) e. _V |
49 |
48
|
a1i |
|- ( ph -> ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) e. _V ) |
50 |
1
|
nnrecred |
|- ( ph -> ( 1 / M ) e. RR ) |
51 |
50
|
adantr |
|- ( ( ph /\ x e. NN ) -> ( 1 / M ) e. RR ) |
52 |
|
nnre |
|- ( x e. NN -> x e. RR ) |
53 |
52
|
adantl |
|- ( ( ph /\ x e. NN ) -> x e. RR ) |
54 |
|
nnne0 |
|- ( x e. NN -> x =/= 0 ) |
55 |
54
|
adantl |
|- ( ( ph /\ x e. NN ) -> x =/= 0 ) |
56 |
53 55
|
rereccld |
|- ( ( ph /\ x e. NN ) -> ( 1 / x ) e. RR ) |
57 |
51 56
|
resubcld |
|- ( ( ph /\ x e. NN ) -> ( ( 1 / M ) - ( 1 / x ) ) e. RR ) |
58 |
42 57
|
eqeltrd |
|- ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) ` x ) e. RR ) |
59 |
|
eqidd |
|- ( ( ph /\ x e. NN ) -> ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) = ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ) |
60 |
|
fvoveq1 |
|- ( k = x -> ( |_ ` ( k / M ) ) = ( |_ ` ( x / M ) ) ) |
61 |
|
id |
|- ( k = x -> k = x ) |
62 |
60 61
|
oveq12d |
|- ( k = x -> ( ( |_ ` ( k / M ) ) / k ) = ( ( |_ ` ( x / M ) ) / x ) ) |
63 |
62
|
adantl |
|- ( ( ( ph /\ x e. NN ) /\ k = x ) -> ( ( |_ ` ( k / M ) ) / k ) = ( ( |_ ` ( x / M ) ) / x ) ) |
64 |
|
ovexd |
|- ( ( ph /\ x e. NN ) -> ( ( |_ ` ( x / M ) ) / x ) e. _V ) |
65 |
59 63 32 64
|
fvmptd |
|- ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ` x ) = ( ( |_ ` ( x / M ) ) / x ) ) |
66 |
1
|
adantr |
|- ( ( ph /\ x e. NN ) -> M e. NN ) |
67 |
53 66
|
nndivred |
|- ( ( ph /\ x e. NN ) -> ( x / M ) e. RR ) |
68 |
|
reflcl |
|- ( ( x / M ) e. RR -> ( |_ ` ( x / M ) ) e. RR ) |
69 |
67 68
|
syl |
|- ( ( ph /\ x e. NN ) -> ( |_ ` ( x / M ) ) e. RR ) |
70 |
69 53 55
|
redivcld |
|- ( ( ph /\ x e. NN ) -> ( ( |_ ` ( x / M ) ) / x ) e. RR ) |
71 |
65 70
|
eqeltrd |
|- ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ` x ) e. RR ) |
72 |
67
|
recnd |
|- ( ( ph /\ x e. NN ) -> ( x / M ) e. CC ) |
73 |
|
1cnd |
|- ( ( ph /\ x e. NN ) -> 1 e. CC ) |
74 |
|
nncn |
|- ( x e. NN -> x e. CC ) |
75 |
74
|
adantl |
|- ( ( ph /\ x e. NN ) -> x e. CC ) |
76 |
72 73 75 55
|
divsubdird |
|- ( ( ph /\ x e. NN ) -> ( ( ( x / M ) - 1 ) / x ) = ( ( ( x / M ) / x ) - ( 1 / x ) ) ) |
77 |
12
|
adantr |
|- ( ( ph /\ x e. NN ) -> M e. CC ) |
78 |
13
|
adantr |
|- ( ( ph /\ x e. NN ) -> M =/= 0 ) |
79 |
75 77 78
|
divrecd |
|- ( ( ph /\ x e. NN ) -> ( x / M ) = ( x x. ( 1 / M ) ) ) |
80 |
79
|
oveq1d |
|- ( ( ph /\ x e. NN ) -> ( ( x / M ) / x ) = ( ( x x. ( 1 / M ) ) / x ) ) |
81 |
27 75 55
|
divcan3d |
|- ( ( ph /\ x e. NN ) -> ( ( x x. ( 1 / M ) ) / x ) = ( 1 / M ) ) |
82 |
80 81
|
eqtrd |
|- ( ( ph /\ x e. NN ) -> ( ( x / M ) / x ) = ( 1 / M ) ) |
83 |
82
|
oveq1d |
|- ( ( ph /\ x e. NN ) -> ( ( ( x / M ) / x ) - ( 1 / x ) ) = ( ( 1 / M ) - ( 1 / x ) ) ) |
84 |
76 83
|
eqtrd |
|- ( ( ph /\ x e. NN ) -> ( ( ( x / M ) - 1 ) / x ) = ( ( 1 / M ) - ( 1 / x ) ) ) |
85 |
|
1red |
|- ( ( ph /\ x e. NN ) -> 1 e. RR ) |
86 |
67 85
|
resubcld |
|- ( ( ph /\ x e. NN ) -> ( ( x / M ) - 1 ) e. RR ) |
87 |
|
nnrp |
|- ( x e. NN -> x e. RR+ ) |
88 |
87
|
adantl |
|- ( ( ph /\ x e. NN ) -> x e. RR+ ) |
89 |
69 85
|
readdcld |
|- ( ( ph /\ x e. NN ) -> ( ( |_ ` ( x / M ) ) + 1 ) e. RR ) |
90 |
|
flle |
|- ( ( x / M ) e. RR -> ( |_ ` ( x / M ) ) <_ ( x / M ) ) |
91 |
67 90
|
syl |
|- ( ( ph /\ x e. NN ) -> ( |_ ` ( x / M ) ) <_ ( x / M ) ) |
92 |
|
flflp1 |
|- ( ( ( x / M ) e. RR /\ ( x / M ) e. RR ) -> ( ( |_ ` ( x / M ) ) <_ ( x / M ) <-> ( x / M ) < ( ( |_ ` ( x / M ) ) + 1 ) ) ) |
93 |
67 67 92
|
syl2anc |
|- ( ( ph /\ x e. NN ) -> ( ( |_ ` ( x / M ) ) <_ ( x / M ) <-> ( x / M ) < ( ( |_ ` ( x / M ) ) + 1 ) ) ) |
94 |
91 93
|
mpbid |
|- ( ( ph /\ x e. NN ) -> ( x / M ) < ( ( |_ ` ( x / M ) ) + 1 ) ) |
95 |
67 89 85 94
|
ltsub1dd |
|- ( ( ph /\ x e. NN ) -> ( ( x / M ) - 1 ) < ( ( ( |_ ` ( x / M ) ) + 1 ) - 1 ) ) |
96 |
69
|
recnd |
|- ( ( ph /\ x e. NN ) -> ( |_ ` ( x / M ) ) e. CC ) |
97 |
96 73
|
pncand |
|- ( ( ph /\ x e. NN ) -> ( ( ( |_ ` ( x / M ) ) + 1 ) - 1 ) = ( |_ ` ( x / M ) ) ) |
98 |
95 97
|
breqtrd |
|- ( ( ph /\ x e. NN ) -> ( ( x / M ) - 1 ) < ( |_ ` ( x / M ) ) ) |
99 |
86 69 88 98
|
ltdiv1dd |
|- ( ( ph /\ x e. NN ) -> ( ( ( x / M ) - 1 ) / x ) < ( ( |_ ` ( x / M ) ) / x ) ) |
100 |
84 99
|
eqbrtrrd |
|- ( ( ph /\ x e. NN ) -> ( ( 1 / M ) - ( 1 / x ) ) < ( ( |_ ` ( x / M ) ) / x ) ) |
101 |
57 70 100
|
ltled |
|- ( ( ph /\ x e. NN ) -> ( ( 1 / M ) - ( 1 / x ) ) <_ ( ( |_ ` ( x / M ) ) / x ) ) |
102 |
|
simpr |
|- ( ( ( ph /\ x e. NN ) /\ k = x ) -> k = x ) |
103 |
102
|
fvoveq1d |
|- ( ( ( ph /\ x e. NN ) /\ k = x ) -> ( |_ ` ( k / M ) ) = ( |_ ` ( x / M ) ) ) |
104 |
103 102
|
oveq12d |
|- ( ( ( ph /\ x e. NN ) /\ k = x ) -> ( ( |_ ` ( k / M ) ) / k ) = ( ( |_ ` ( x / M ) ) / x ) ) |
105 |
59 104 32 64
|
fvmptd |
|- ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ` x ) = ( ( |_ ` ( x / M ) ) / x ) ) |
106 |
101 42 105
|
3brtr4d |
|- ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) ` x ) <_ ( ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ` x ) ) |
107 |
69 67 88 91
|
lediv1dd |
|- ( ( ph /\ x e. NN ) -> ( ( |_ ` ( x / M ) ) / x ) <_ ( ( x / M ) / x ) ) |
108 |
107 82
|
breqtrd |
|- ( ( ph /\ x e. NN ) -> ( ( |_ ` ( x / M ) ) / x ) <_ ( 1 / M ) ) |
109 |
105 108
|
eqbrtrd |
|- ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ` x ) <_ ( 1 / M ) ) |
110 |
9 11 47 49 58 71 106 109
|
climsqz |
|- ( ph -> ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ~~> ( 1 / M ) ) |
111 |
16
|
mptex |
|- ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) e. _V |
112 |
111
|
a1i |
|- ( ph -> ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) e. _V ) |
113 |
2
|
zred |
|- ( ph -> J e. RR ) |
114 |
|
1red |
|- ( ph -> 1 e. RR ) |
115 |
113 114
|
resubcld |
|- ( ph -> ( J - 1 ) e. RR ) |
116 |
115 1
|
nndivred |
|- ( ph -> ( ( J - 1 ) / M ) e. RR ) |
117 |
116
|
flcld |
|- ( ph -> ( |_ ` ( ( J - 1 ) / M ) ) e. ZZ ) |
118 |
117
|
zcnd |
|- ( ph -> ( |_ ` ( ( J - 1 ) / M ) ) e. CC ) |
119 |
|
divcnv |
|- ( ( |_ ` ( ( J - 1 ) / M ) ) e. CC -> ( k e. NN |-> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) ) ~~> 0 ) |
120 |
118 119
|
syl |
|- ( ph -> ( k e. NN |-> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) ) ~~> 0 ) |
121 |
71
|
recnd |
|- ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ` x ) e. CC ) |
122 |
|
eqidd |
|- ( ( ph /\ x e. NN ) -> ( k e. NN |-> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) ) = ( k e. NN |-> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) ) ) |
123 |
|
oveq2 |
|- ( k = x -> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) = ( ( |_ ` ( ( J - 1 ) / M ) ) / x ) ) |
124 |
123
|
adantl |
|- ( ( ( ph /\ x e. NN ) /\ k = x ) -> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) = ( ( |_ ` ( ( J - 1 ) / M ) ) / x ) ) |
125 |
|
ovexd |
|- ( ( ph /\ x e. NN ) -> ( ( |_ ` ( ( J - 1 ) / M ) ) / x ) e. _V ) |
126 |
122 124 32 125
|
fvmptd |
|- ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) ) ` x ) = ( ( |_ ` ( ( J - 1 ) / M ) ) / x ) ) |
127 |
118
|
adantr |
|- ( ( ph /\ x e. NN ) -> ( |_ ` ( ( J - 1 ) / M ) ) e. CC ) |
128 |
127 75 55
|
divcld |
|- ( ( ph /\ x e. NN ) -> ( ( |_ ` ( ( J - 1 ) / M ) ) / x ) e. CC ) |
129 |
126 128
|
eqeltrd |
|- ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) ) ` x ) e. CC ) |
130 |
96 127 75 55
|
divsubdird |
|- ( ( ph /\ x e. NN ) -> ( ( ( |_ ` ( x / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / x ) = ( ( ( |_ ` ( x / M ) ) / x ) - ( ( |_ ` ( ( J - 1 ) / M ) ) / x ) ) ) |
131 |
|
eqidd |
|- ( ( ph /\ x e. NN ) -> ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) = ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ) |
132 |
60
|
oveq1d |
|- ( k = x -> ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) = ( ( |_ ` ( x / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) ) |
133 |
132 61
|
oveq12d |
|- ( k = x -> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) = ( ( ( |_ ` ( x / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / x ) ) |
134 |
133
|
adantl |
|- ( ( ( ph /\ x e. NN ) /\ k = x ) -> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) = ( ( ( |_ ` ( x / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / x ) ) |
135 |
|
ovexd |
|- ( ( ph /\ x e. NN ) -> ( ( ( |_ ` ( x / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / x ) e. _V ) |
136 |
131 134 32 135
|
fvmptd |
|- ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ` x ) = ( ( ( |_ ` ( x / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / x ) ) |
137 |
65 126
|
oveq12d |
|- ( ( ph /\ x e. NN ) -> ( ( ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ` x ) - ( ( k e. NN |-> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) ) ` x ) ) = ( ( ( |_ ` ( x / M ) ) / x ) - ( ( |_ ` ( ( J - 1 ) / M ) ) / x ) ) ) |
138 |
130 136 137
|
3eqtr4d |
|- ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ` x ) = ( ( ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ` x ) - ( ( k e. NN |-> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) ) ` x ) ) ) |
139 |
9 11 110 112 120 121 129 138
|
climsub |
|- ( ph -> ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( ( 1 / M ) - 0 ) ) |
140 |
139 46
|
breqtrd |
|- ( ph -> ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) |
141 |
|
uzssz |
|- ( ZZ>= ` ( J - 1 ) ) C_ ZZ |
142 |
|
resmpt |
|- ( ( ZZ>= ` ( J - 1 ) ) C_ ZZ -> ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` ( J - 1 ) ) ) = ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ) |
143 |
141 142
|
ax-mp |
|- ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` ( J - 1 ) ) ) = ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |
144 |
143
|
breq1i |
|- ( ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` ( J - 1 ) ) ) ~~> ( 1 / M ) <-> ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) |
145 |
2 11
|
zsubcld |
|- ( ph -> ( J - 1 ) e. ZZ ) |
146 |
|
zex |
|- ZZ e. _V |
147 |
146
|
mptex |
|- ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) e. _V |
148 |
|
climres |
|- ( ( ( J - 1 ) e. ZZ /\ ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) e. _V ) -> ( ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` ( J - 1 ) ) ) ~~> ( 1 / M ) <-> ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) ) |
149 |
145 147 148
|
sylancl |
|- ( ph -> ( ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` ( J - 1 ) ) ) ~~> ( 1 / M ) <-> ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) ) |
150 |
144 149
|
bitr3id |
|- ( ph -> ( ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) <-> ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) ) |
151 |
9
|
reseq2i |
|- ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` NN ) = ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` 1 ) ) |
152 |
151
|
breq1i |
|- ( ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` NN ) ~~> ( 1 / M ) <-> ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` 1 ) ) ~~> ( 1 / M ) ) |
153 |
|
nnssz |
|- NN C_ ZZ |
154 |
|
resmpt |
|- ( NN C_ ZZ -> ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` NN ) = ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ) |
155 |
153 154
|
ax-mp |
|- ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` NN ) = ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |
156 |
155
|
breq1i |
|- ( ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` NN ) ~~> ( 1 / M ) <-> ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) |
157 |
|
climres |
|- ( ( 1 e. ZZ /\ ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) e. _V ) -> ( ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` 1 ) ) ~~> ( 1 / M ) <-> ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) ) |
158 |
10 147 157
|
mp2an |
|- ( ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` 1 ) ) ~~> ( 1 / M ) <-> ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) |
159 |
152 156 158
|
3bitr3i |
|- ( ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) <-> ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) |
160 |
150 159
|
bitr4di |
|- ( ph -> ( ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) <-> ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) ) |
161 |
140 160
|
mpbird |
|- ( ph -> ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) |
162 |
8 161
|
eqbrtrd |
|- ( ph -> ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( # ` ( ( || " { M } ) i^i ( J ... k ) ) ) / k ) ) ~~> ( 1 / M ) ) |