| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashnzfzclim.m |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | hashnzfzclim.j |  |-  ( ph -> J e. ZZ ) | 
						
							| 3 | 1 | adantr |  |-  ( ( ph /\ k e. ( ZZ>= ` ( J - 1 ) ) ) -> M e. NN ) | 
						
							| 4 | 2 | adantr |  |-  ( ( ph /\ k e. ( ZZ>= ` ( J - 1 ) ) ) -> J e. ZZ ) | 
						
							| 5 |  | simpr |  |-  ( ( ph /\ k e. ( ZZ>= ` ( J - 1 ) ) ) -> k e. ( ZZ>= ` ( J - 1 ) ) ) | 
						
							| 6 | 3 4 5 | hashnzfz |  |-  ( ( ph /\ k e. ( ZZ>= ` ( J - 1 ) ) ) -> ( # ` ( ( || " { M } ) i^i ( J ... k ) ) ) = ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( ( ph /\ k e. ( ZZ>= ` ( J - 1 ) ) ) -> ( ( # ` ( ( || " { M } ) i^i ( J ... k ) ) ) / k ) = ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) | 
						
							| 8 | 7 | mpteq2dva |  |-  ( ph -> ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( # ` ( ( || " { M } ) i^i ( J ... k ) ) ) / k ) ) = ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ) | 
						
							| 9 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 10 |  | 1z |  |-  1 e. ZZ | 
						
							| 11 | 10 | a1i |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 12 | 1 | nncnd |  |-  ( ph -> M e. CC ) | 
						
							| 13 | 1 | nnne0d |  |-  ( ph -> M =/= 0 ) | 
						
							| 14 | 12 13 | reccld |  |-  ( ph -> ( 1 / M ) e. CC ) | 
						
							| 15 | 9 | eqimss2i |  |-  ( ZZ>= ` 1 ) C_ NN | 
						
							| 16 |  | nnex |  |-  NN e. _V | 
						
							| 17 | 15 16 | climconst2 |  |-  ( ( ( 1 / M ) e. CC /\ 1 e. ZZ ) -> ( NN X. { ( 1 / M ) } ) ~~> ( 1 / M ) ) | 
						
							| 18 | 14 10 17 | sylancl |  |-  ( ph -> ( NN X. { ( 1 / M ) } ) ~~> ( 1 / M ) ) | 
						
							| 19 | 16 | mptex |  |-  ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) e. _V | 
						
							| 20 | 19 | a1i |  |-  ( ph -> ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) e. _V ) | 
						
							| 21 |  | ax-1cn |  |-  1 e. CC | 
						
							| 22 |  | divcnv |  |-  ( 1 e. CC -> ( k e. NN |-> ( 1 / k ) ) ~~> 0 ) | 
						
							| 23 | 21 22 | mp1i |  |-  ( ph -> ( k e. NN |-> ( 1 / k ) ) ~~> 0 ) | 
						
							| 24 |  | ovex |  |-  ( 1 / M ) e. _V | 
						
							| 25 | 24 | fvconst2 |  |-  ( x e. NN -> ( ( NN X. { ( 1 / M ) } ) ` x ) = ( 1 / M ) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ph /\ x e. NN ) -> ( ( NN X. { ( 1 / M ) } ) ` x ) = ( 1 / M ) ) | 
						
							| 27 | 14 | adantr |  |-  ( ( ph /\ x e. NN ) -> ( 1 / M ) e. CC ) | 
						
							| 28 | 26 27 | eqeltrd |  |-  ( ( ph /\ x e. NN ) -> ( ( NN X. { ( 1 / M ) } ) ` x ) e. CC ) | 
						
							| 29 |  | eqidd |  |-  ( ( ph /\ x e. NN ) -> ( k e. NN |-> ( 1 / k ) ) = ( k e. NN |-> ( 1 / k ) ) ) | 
						
							| 30 |  | oveq2 |  |-  ( k = x -> ( 1 / k ) = ( 1 / x ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( ph /\ x e. NN ) /\ k = x ) -> ( 1 / k ) = ( 1 / x ) ) | 
						
							| 32 |  | simpr |  |-  ( ( ph /\ x e. NN ) -> x e. NN ) | 
						
							| 33 |  | ovexd |  |-  ( ( ph /\ x e. NN ) -> ( 1 / x ) e. _V ) | 
						
							| 34 | 29 31 32 33 | fvmptd |  |-  ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( 1 / k ) ) ` x ) = ( 1 / x ) ) | 
						
							| 35 | 32 | nnrecred |  |-  ( ( ph /\ x e. NN ) -> ( 1 / x ) e. RR ) | 
						
							| 36 | 34 35 | eqeltrd |  |-  ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( 1 / k ) ) ` x ) e. RR ) | 
						
							| 37 | 36 | recnd |  |-  ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( 1 / k ) ) ` x ) e. CC ) | 
						
							| 38 |  | eqidd |  |-  ( ( ph /\ x e. NN ) -> ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) = ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) ) | 
						
							| 39 | 30 | oveq2d |  |-  ( k = x -> ( ( 1 / M ) - ( 1 / k ) ) = ( ( 1 / M ) - ( 1 / x ) ) ) | 
						
							| 40 | 39 | adantl |  |-  ( ( ( ph /\ x e. NN ) /\ k = x ) -> ( ( 1 / M ) - ( 1 / k ) ) = ( ( 1 / M ) - ( 1 / x ) ) ) | 
						
							| 41 |  | ovexd |  |-  ( ( ph /\ x e. NN ) -> ( ( 1 / M ) - ( 1 / x ) ) e. _V ) | 
						
							| 42 | 38 40 32 41 | fvmptd |  |-  ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) ` x ) = ( ( 1 / M ) - ( 1 / x ) ) ) | 
						
							| 43 | 26 34 | oveq12d |  |-  ( ( ph /\ x e. NN ) -> ( ( ( NN X. { ( 1 / M ) } ) ` x ) - ( ( k e. NN |-> ( 1 / k ) ) ` x ) ) = ( ( 1 / M ) - ( 1 / x ) ) ) | 
						
							| 44 | 42 43 | eqtr4d |  |-  ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) ` x ) = ( ( ( NN X. { ( 1 / M ) } ) ` x ) - ( ( k e. NN |-> ( 1 / k ) ) ` x ) ) ) | 
						
							| 45 | 9 11 18 20 23 28 37 44 | climsub |  |-  ( ph -> ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) ~~> ( ( 1 / M ) - 0 ) ) | 
						
							| 46 | 14 | subid1d |  |-  ( ph -> ( ( 1 / M ) - 0 ) = ( 1 / M ) ) | 
						
							| 47 | 45 46 | breqtrd |  |-  ( ph -> ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) ~~> ( 1 / M ) ) | 
						
							| 48 | 16 | mptex |  |-  ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) e. _V | 
						
							| 49 | 48 | a1i |  |-  ( ph -> ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) e. _V ) | 
						
							| 50 | 1 | nnrecred |  |-  ( ph -> ( 1 / M ) e. RR ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ph /\ x e. NN ) -> ( 1 / M ) e. RR ) | 
						
							| 52 |  | nnre |  |-  ( x e. NN -> x e. RR ) | 
						
							| 53 | 52 | adantl |  |-  ( ( ph /\ x e. NN ) -> x e. RR ) | 
						
							| 54 |  | nnne0 |  |-  ( x e. NN -> x =/= 0 ) | 
						
							| 55 | 54 | adantl |  |-  ( ( ph /\ x e. NN ) -> x =/= 0 ) | 
						
							| 56 | 53 55 | rereccld |  |-  ( ( ph /\ x e. NN ) -> ( 1 / x ) e. RR ) | 
						
							| 57 | 51 56 | resubcld |  |-  ( ( ph /\ x e. NN ) -> ( ( 1 / M ) - ( 1 / x ) ) e. RR ) | 
						
							| 58 | 42 57 | eqeltrd |  |-  ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) ` x ) e. RR ) | 
						
							| 59 |  | eqidd |  |-  ( ( ph /\ x e. NN ) -> ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) = ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ) | 
						
							| 60 |  | fvoveq1 |  |-  ( k = x -> ( |_ ` ( k / M ) ) = ( |_ ` ( x / M ) ) ) | 
						
							| 61 |  | id |  |-  ( k = x -> k = x ) | 
						
							| 62 | 60 61 | oveq12d |  |-  ( k = x -> ( ( |_ ` ( k / M ) ) / k ) = ( ( |_ ` ( x / M ) ) / x ) ) | 
						
							| 63 | 62 | adantl |  |-  ( ( ( ph /\ x e. NN ) /\ k = x ) -> ( ( |_ ` ( k / M ) ) / k ) = ( ( |_ ` ( x / M ) ) / x ) ) | 
						
							| 64 |  | ovexd |  |-  ( ( ph /\ x e. NN ) -> ( ( |_ ` ( x / M ) ) / x ) e. _V ) | 
						
							| 65 | 59 63 32 64 | fvmptd |  |-  ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ` x ) = ( ( |_ ` ( x / M ) ) / x ) ) | 
						
							| 66 | 1 | adantr |  |-  ( ( ph /\ x e. NN ) -> M e. NN ) | 
						
							| 67 | 53 66 | nndivred |  |-  ( ( ph /\ x e. NN ) -> ( x / M ) e. RR ) | 
						
							| 68 |  | reflcl |  |-  ( ( x / M ) e. RR -> ( |_ ` ( x / M ) ) e. RR ) | 
						
							| 69 | 67 68 | syl |  |-  ( ( ph /\ x e. NN ) -> ( |_ ` ( x / M ) ) e. RR ) | 
						
							| 70 | 69 53 55 | redivcld |  |-  ( ( ph /\ x e. NN ) -> ( ( |_ ` ( x / M ) ) / x ) e. RR ) | 
						
							| 71 | 65 70 | eqeltrd |  |-  ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ` x ) e. RR ) | 
						
							| 72 | 67 | recnd |  |-  ( ( ph /\ x e. NN ) -> ( x / M ) e. CC ) | 
						
							| 73 |  | 1cnd |  |-  ( ( ph /\ x e. NN ) -> 1 e. CC ) | 
						
							| 74 |  | nncn |  |-  ( x e. NN -> x e. CC ) | 
						
							| 75 | 74 | adantl |  |-  ( ( ph /\ x e. NN ) -> x e. CC ) | 
						
							| 76 | 72 73 75 55 | divsubdird |  |-  ( ( ph /\ x e. NN ) -> ( ( ( x / M ) - 1 ) / x ) = ( ( ( x / M ) / x ) - ( 1 / x ) ) ) | 
						
							| 77 | 12 | adantr |  |-  ( ( ph /\ x e. NN ) -> M e. CC ) | 
						
							| 78 | 13 | adantr |  |-  ( ( ph /\ x e. NN ) -> M =/= 0 ) | 
						
							| 79 | 75 77 78 | divrecd |  |-  ( ( ph /\ x e. NN ) -> ( x / M ) = ( x x. ( 1 / M ) ) ) | 
						
							| 80 | 79 | oveq1d |  |-  ( ( ph /\ x e. NN ) -> ( ( x / M ) / x ) = ( ( x x. ( 1 / M ) ) / x ) ) | 
						
							| 81 | 27 75 55 | divcan3d |  |-  ( ( ph /\ x e. NN ) -> ( ( x x. ( 1 / M ) ) / x ) = ( 1 / M ) ) | 
						
							| 82 | 80 81 | eqtrd |  |-  ( ( ph /\ x e. NN ) -> ( ( x / M ) / x ) = ( 1 / M ) ) | 
						
							| 83 | 82 | oveq1d |  |-  ( ( ph /\ x e. NN ) -> ( ( ( x / M ) / x ) - ( 1 / x ) ) = ( ( 1 / M ) - ( 1 / x ) ) ) | 
						
							| 84 | 76 83 | eqtrd |  |-  ( ( ph /\ x e. NN ) -> ( ( ( x / M ) - 1 ) / x ) = ( ( 1 / M ) - ( 1 / x ) ) ) | 
						
							| 85 |  | 1red |  |-  ( ( ph /\ x e. NN ) -> 1 e. RR ) | 
						
							| 86 | 67 85 | resubcld |  |-  ( ( ph /\ x e. NN ) -> ( ( x / M ) - 1 ) e. RR ) | 
						
							| 87 |  | nnrp |  |-  ( x e. NN -> x e. RR+ ) | 
						
							| 88 | 87 | adantl |  |-  ( ( ph /\ x e. NN ) -> x e. RR+ ) | 
						
							| 89 | 69 85 | readdcld |  |-  ( ( ph /\ x e. NN ) -> ( ( |_ ` ( x / M ) ) + 1 ) e. RR ) | 
						
							| 90 |  | flle |  |-  ( ( x / M ) e. RR -> ( |_ ` ( x / M ) ) <_ ( x / M ) ) | 
						
							| 91 | 67 90 | syl |  |-  ( ( ph /\ x e. NN ) -> ( |_ ` ( x / M ) ) <_ ( x / M ) ) | 
						
							| 92 |  | flflp1 |  |-  ( ( ( x / M ) e. RR /\ ( x / M ) e. RR ) -> ( ( |_ ` ( x / M ) ) <_ ( x / M ) <-> ( x / M ) < ( ( |_ ` ( x / M ) ) + 1 ) ) ) | 
						
							| 93 | 67 67 92 | syl2anc |  |-  ( ( ph /\ x e. NN ) -> ( ( |_ ` ( x / M ) ) <_ ( x / M ) <-> ( x / M ) < ( ( |_ ` ( x / M ) ) + 1 ) ) ) | 
						
							| 94 | 91 93 | mpbid |  |-  ( ( ph /\ x e. NN ) -> ( x / M ) < ( ( |_ ` ( x / M ) ) + 1 ) ) | 
						
							| 95 | 67 89 85 94 | ltsub1dd |  |-  ( ( ph /\ x e. NN ) -> ( ( x / M ) - 1 ) < ( ( ( |_ ` ( x / M ) ) + 1 ) - 1 ) ) | 
						
							| 96 | 69 | recnd |  |-  ( ( ph /\ x e. NN ) -> ( |_ ` ( x / M ) ) e. CC ) | 
						
							| 97 | 96 73 | pncand |  |-  ( ( ph /\ x e. NN ) -> ( ( ( |_ ` ( x / M ) ) + 1 ) - 1 ) = ( |_ ` ( x / M ) ) ) | 
						
							| 98 | 95 97 | breqtrd |  |-  ( ( ph /\ x e. NN ) -> ( ( x / M ) - 1 ) < ( |_ ` ( x / M ) ) ) | 
						
							| 99 | 86 69 88 98 | ltdiv1dd |  |-  ( ( ph /\ x e. NN ) -> ( ( ( x / M ) - 1 ) / x ) < ( ( |_ ` ( x / M ) ) / x ) ) | 
						
							| 100 | 84 99 | eqbrtrrd |  |-  ( ( ph /\ x e. NN ) -> ( ( 1 / M ) - ( 1 / x ) ) < ( ( |_ ` ( x / M ) ) / x ) ) | 
						
							| 101 | 57 70 100 | ltled |  |-  ( ( ph /\ x e. NN ) -> ( ( 1 / M ) - ( 1 / x ) ) <_ ( ( |_ ` ( x / M ) ) / x ) ) | 
						
							| 102 |  | simpr |  |-  ( ( ( ph /\ x e. NN ) /\ k = x ) -> k = x ) | 
						
							| 103 | 102 | fvoveq1d |  |-  ( ( ( ph /\ x e. NN ) /\ k = x ) -> ( |_ ` ( k / M ) ) = ( |_ ` ( x / M ) ) ) | 
						
							| 104 | 103 102 | oveq12d |  |-  ( ( ( ph /\ x e. NN ) /\ k = x ) -> ( ( |_ ` ( k / M ) ) / k ) = ( ( |_ ` ( x / M ) ) / x ) ) | 
						
							| 105 | 59 104 32 64 | fvmptd |  |-  ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ` x ) = ( ( |_ ` ( x / M ) ) / x ) ) | 
						
							| 106 | 101 42 105 | 3brtr4d |  |-  ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( 1 / M ) - ( 1 / k ) ) ) ` x ) <_ ( ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ` x ) ) | 
						
							| 107 | 69 67 88 91 | lediv1dd |  |-  ( ( ph /\ x e. NN ) -> ( ( |_ ` ( x / M ) ) / x ) <_ ( ( x / M ) / x ) ) | 
						
							| 108 | 107 82 | breqtrd |  |-  ( ( ph /\ x e. NN ) -> ( ( |_ ` ( x / M ) ) / x ) <_ ( 1 / M ) ) | 
						
							| 109 | 105 108 | eqbrtrd |  |-  ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ` x ) <_ ( 1 / M ) ) | 
						
							| 110 | 9 11 47 49 58 71 106 109 | climsqz |  |-  ( ph -> ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ~~> ( 1 / M ) ) | 
						
							| 111 | 16 | mptex |  |-  ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) e. _V | 
						
							| 112 | 111 | a1i |  |-  ( ph -> ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) e. _V ) | 
						
							| 113 | 2 | zred |  |-  ( ph -> J e. RR ) | 
						
							| 114 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 115 | 113 114 | resubcld |  |-  ( ph -> ( J - 1 ) e. RR ) | 
						
							| 116 | 115 1 | nndivred |  |-  ( ph -> ( ( J - 1 ) / M ) e. RR ) | 
						
							| 117 | 116 | flcld |  |-  ( ph -> ( |_ ` ( ( J - 1 ) / M ) ) e. ZZ ) | 
						
							| 118 | 117 | zcnd |  |-  ( ph -> ( |_ ` ( ( J - 1 ) / M ) ) e. CC ) | 
						
							| 119 |  | divcnv |  |-  ( ( |_ ` ( ( J - 1 ) / M ) ) e. CC -> ( k e. NN |-> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) ) ~~> 0 ) | 
						
							| 120 | 118 119 | syl |  |-  ( ph -> ( k e. NN |-> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) ) ~~> 0 ) | 
						
							| 121 | 71 | recnd |  |-  ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ` x ) e. CC ) | 
						
							| 122 |  | eqidd |  |-  ( ( ph /\ x e. NN ) -> ( k e. NN |-> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) ) = ( k e. NN |-> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) ) ) | 
						
							| 123 |  | oveq2 |  |-  ( k = x -> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) = ( ( |_ ` ( ( J - 1 ) / M ) ) / x ) ) | 
						
							| 124 | 123 | adantl |  |-  ( ( ( ph /\ x e. NN ) /\ k = x ) -> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) = ( ( |_ ` ( ( J - 1 ) / M ) ) / x ) ) | 
						
							| 125 |  | ovexd |  |-  ( ( ph /\ x e. NN ) -> ( ( |_ ` ( ( J - 1 ) / M ) ) / x ) e. _V ) | 
						
							| 126 | 122 124 32 125 | fvmptd |  |-  ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) ) ` x ) = ( ( |_ ` ( ( J - 1 ) / M ) ) / x ) ) | 
						
							| 127 | 118 | adantr |  |-  ( ( ph /\ x e. NN ) -> ( |_ ` ( ( J - 1 ) / M ) ) e. CC ) | 
						
							| 128 | 127 75 55 | divcld |  |-  ( ( ph /\ x e. NN ) -> ( ( |_ ` ( ( J - 1 ) / M ) ) / x ) e. CC ) | 
						
							| 129 | 126 128 | eqeltrd |  |-  ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) ) ` x ) e. CC ) | 
						
							| 130 | 96 127 75 55 | divsubdird |  |-  ( ( ph /\ x e. NN ) -> ( ( ( |_ ` ( x / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / x ) = ( ( ( |_ ` ( x / M ) ) / x ) - ( ( |_ ` ( ( J - 1 ) / M ) ) / x ) ) ) | 
						
							| 131 |  | eqidd |  |-  ( ( ph /\ x e. NN ) -> ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) = ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ) | 
						
							| 132 | 60 | oveq1d |  |-  ( k = x -> ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) = ( ( |_ ` ( x / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) ) | 
						
							| 133 | 132 61 | oveq12d |  |-  ( k = x -> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) = ( ( ( |_ ` ( x / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / x ) ) | 
						
							| 134 | 133 | adantl |  |-  ( ( ( ph /\ x e. NN ) /\ k = x ) -> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) = ( ( ( |_ ` ( x / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / x ) ) | 
						
							| 135 |  | ovexd |  |-  ( ( ph /\ x e. NN ) -> ( ( ( |_ ` ( x / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / x ) e. _V ) | 
						
							| 136 | 131 134 32 135 | fvmptd |  |-  ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ` x ) = ( ( ( |_ ` ( x / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / x ) ) | 
						
							| 137 | 65 126 | oveq12d |  |-  ( ( ph /\ x e. NN ) -> ( ( ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ` x ) - ( ( k e. NN |-> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) ) ` x ) ) = ( ( ( |_ ` ( x / M ) ) / x ) - ( ( |_ ` ( ( J - 1 ) / M ) ) / x ) ) ) | 
						
							| 138 | 130 136 137 | 3eqtr4d |  |-  ( ( ph /\ x e. NN ) -> ( ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ` x ) = ( ( ( k e. NN |-> ( ( |_ ` ( k / M ) ) / k ) ) ` x ) - ( ( k e. NN |-> ( ( |_ ` ( ( J - 1 ) / M ) ) / k ) ) ` x ) ) ) | 
						
							| 139 | 9 11 110 112 120 121 129 138 | climsub |  |-  ( ph -> ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( ( 1 / M ) - 0 ) ) | 
						
							| 140 | 139 46 | breqtrd |  |-  ( ph -> ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) | 
						
							| 141 |  | uzssz |  |-  ( ZZ>= ` ( J - 1 ) ) C_ ZZ | 
						
							| 142 |  | resmpt |  |-  ( ( ZZ>= ` ( J - 1 ) ) C_ ZZ -> ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` ( J - 1 ) ) ) = ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ) | 
						
							| 143 | 141 142 | ax-mp |  |-  ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` ( J - 1 ) ) ) = ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) | 
						
							| 144 | 143 | breq1i |  |-  ( ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` ( J - 1 ) ) ) ~~> ( 1 / M ) <-> ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) | 
						
							| 145 | 2 11 | zsubcld |  |-  ( ph -> ( J - 1 ) e. ZZ ) | 
						
							| 146 |  | zex |  |-  ZZ e. _V | 
						
							| 147 | 146 | mptex |  |-  ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) e. _V | 
						
							| 148 |  | climres |  |-  ( ( ( J - 1 ) e. ZZ /\ ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) e. _V ) -> ( ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` ( J - 1 ) ) ) ~~> ( 1 / M ) <-> ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) ) | 
						
							| 149 | 145 147 148 | sylancl |  |-  ( ph -> ( ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` ( J - 1 ) ) ) ~~> ( 1 / M ) <-> ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) ) | 
						
							| 150 | 144 149 | bitr3id |  |-  ( ph -> ( ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) <-> ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) ) | 
						
							| 151 | 9 | reseq2i |  |-  ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` NN ) = ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` 1 ) ) | 
						
							| 152 | 151 | breq1i |  |-  ( ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` NN ) ~~> ( 1 / M ) <-> ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` 1 ) ) ~~> ( 1 / M ) ) | 
						
							| 153 |  | nnssz |  |-  NN C_ ZZ | 
						
							| 154 |  | resmpt |  |-  ( NN C_ ZZ -> ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` NN ) = ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ) | 
						
							| 155 | 153 154 | ax-mp |  |-  ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` NN ) = ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) | 
						
							| 156 | 155 | breq1i |  |-  ( ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` NN ) ~~> ( 1 / M ) <-> ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) | 
						
							| 157 |  | climres |  |-  ( ( 1 e. ZZ /\ ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) e. _V ) -> ( ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` 1 ) ) ~~> ( 1 / M ) <-> ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) ) | 
						
							| 158 | 10 147 157 | mp2an |  |-  ( ( ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) |` ( ZZ>= ` 1 ) ) ~~> ( 1 / M ) <-> ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) | 
						
							| 159 | 152 156 158 | 3bitr3i |  |-  ( ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) <-> ( k e. ZZ |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) | 
						
							| 160 | 150 159 | bitr4di |  |-  ( ph -> ( ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) <-> ( k e. NN |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) ) | 
						
							| 161 | 140 160 | mpbird |  |-  ( ph -> ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( ( |_ ` ( k / M ) ) - ( |_ ` ( ( J - 1 ) / M ) ) ) / k ) ) ~~> ( 1 / M ) ) | 
						
							| 162 | 8 161 | eqbrtrd |  |-  ( ph -> ( k e. ( ZZ>= ` ( J - 1 ) ) |-> ( ( # ` ( ( || " { M } ) i^i ( J ... k ) ) ) / k ) ) ~~> ( 1 / M ) ) |