Step |
Hyp |
Ref |
Expression |
1 |
|
hashnzfzclim.m |
|
2 |
|
hashnzfzclim.j |
|
3 |
1
|
adantr |
|
4 |
2
|
adantr |
|
5 |
|
simpr |
|
6 |
3 4 5
|
hashnzfz |
|
7 |
6
|
oveq1d |
|
8 |
7
|
mpteq2dva |
|
9 |
|
nnuz |
|
10 |
|
1z |
|
11 |
10
|
a1i |
|
12 |
1
|
nncnd |
|
13 |
1
|
nnne0d |
|
14 |
12 13
|
reccld |
|
15 |
9
|
eqimss2i |
|
16 |
|
nnex |
|
17 |
15 16
|
climconst2 |
|
18 |
14 10 17
|
sylancl |
|
19 |
16
|
mptex |
|
20 |
19
|
a1i |
|
21 |
|
ax-1cn |
|
22 |
|
divcnv |
|
23 |
21 22
|
mp1i |
|
24 |
|
ovex |
|
25 |
24
|
fvconst2 |
|
26 |
25
|
adantl |
|
27 |
14
|
adantr |
|
28 |
26 27
|
eqeltrd |
|
29 |
|
eqidd |
|
30 |
|
oveq2 |
|
31 |
30
|
adantl |
|
32 |
|
simpr |
|
33 |
|
ovexd |
|
34 |
29 31 32 33
|
fvmptd |
|
35 |
32
|
nnrecred |
|
36 |
34 35
|
eqeltrd |
|
37 |
36
|
recnd |
|
38 |
|
eqidd |
|
39 |
30
|
oveq2d |
|
40 |
39
|
adantl |
|
41 |
|
ovexd |
|
42 |
38 40 32 41
|
fvmptd |
|
43 |
26 34
|
oveq12d |
|
44 |
42 43
|
eqtr4d |
|
45 |
9 11 18 20 23 28 37 44
|
climsub |
|
46 |
14
|
subid1d |
|
47 |
45 46
|
breqtrd |
|
48 |
16
|
mptex |
|
49 |
48
|
a1i |
|
50 |
1
|
nnrecred |
|
51 |
50
|
adantr |
|
52 |
|
nnre |
|
53 |
52
|
adantl |
|
54 |
|
nnne0 |
|
55 |
54
|
adantl |
|
56 |
53 55
|
rereccld |
|
57 |
51 56
|
resubcld |
|
58 |
42 57
|
eqeltrd |
|
59 |
|
eqidd |
|
60 |
|
fvoveq1 |
|
61 |
|
id |
|
62 |
60 61
|
oveq12d |
|
63 |
62
|
adantl |
|
64 |
|
ovexd |
|
65 |
59 63 32 64
|
fvmptd |
|
66 |
1
|
adantr |
|
67 |
53 66
|
nndivred |
|
68 |
|
reflcl |
|
69 |
67 68
|
syl |
|
70 |
69 53 55
|
redivcld |
|
71 |
65 70
|
eqeltrd |
|
72 |
67
|
recnd |
|
73 |
|
1cnd |
|
74 |
|
nncn |
|
75 |
74
|
adantl |
|
76 |
72 73 75 55
|
divsubdird |
|
77 |
12
|
adantr |
|
78 |
13
|
adantr |
|
79 |
75 77 78
|
divrecd |
|
80 |
79
|
oveq1d |
|
81 |
27 75 55
|
divcan3d |
|
82 |
80 81
|
eqtrd |
|
83 |
82
|
oveq1d |
|
84 |
76 83
|
eqtrd |
|
85 |
|
1red |
|
86 |
67 85
|
resubcld |
|
87 |
|
nnrp |
|
88 |
87
|
adantl |
|
89 |
69 85
|
readdcld |
|
90 |
|
flle |
|
91 |
67 90
|
syl |
|
92 |
|
flflp1 |
|
93 |
67 67 92
|
syl2anc |
|
94 |
91 93
|
mpbid |
|
95 |
67 89 85 94
|
ltsub1dd |
|
96 |
69
|
recnd |
|
97 |
96 73
|
pncand |
|
98 |
95 97
|
breqtrd |
|
99 |
86 69 88 98
|
ltdiv1dd |
|
100 |
84 99
|
eqbrtrrd |
|
101 |
57 70 100
|
ltled |
|
102 |
|
simpr |
|
103 |
102
|
fvoveq1d |
|
104 |
103 102
|
oveq12d |
|
105 |
59 104 32 64
|
fvmptd |
|
106 |
101 42 105
|
3brtr4d |
|
107 |
69 67 88 91
|
lediv1dd |
|
108 |
107 82
|
breqtrd |
|
109 |
105 108
|
eqbrtrd |
|
110 |
9 11 47 49 58 71 106 109
|
climsqz |
|
111 |
16
|
mptex |
|
112 |
111
|
a1i |
|
113 |
2
|
zred |
|
114 |
|
1red |
|
115 |
113 114
|
resubcld |
|
116 |
115 1
|
nndivred |
|
117 |
116
|
flcld |
|
118 |
117
|
zcnd |
|
119 |
|
divcnv |
|
120 |
118 119
|
syl |
|
121 |
71
|
recnd |
|
122 |
|
eqidd |
|
123 |
|
oveq2 |
|
124 |
123
|
adantl |
|
125 |
|
ovexd |
|
126 |
122 124 32 125
|
fvmptd |
|
127 |
118
|
adantr |
|
128 |
127 75 55
|
divcld |
|
129 |
126 128
|
eqeltrd |
|
130 |
96 127 75 55
|
divsubdird |
|
131 |
|
eqidd |
|
132 |
60
|
oveq1d |
|
133 |
132 61
|
oveq12d |
|
134 |
133
|
adantl |
|
135 |
|
ovexd |
|
136 |
131 134 32 135
|
fvmptd |
|
137 |
65 126
|
oveq12d |
|
138 |
130 136 137
|
3eqtr4d |
|
139 |
9 11 110 112 120 121 129 138
|
climsub |
|
140 |
139 46
|
breqtrd |
|
141 |
|
uzssz |
|
142 |
|
resmpt |
|
143 |
141 142
|
ax-mp |
|
144 |
143
|
breq1i |
|
145 |
2 11
|
zsubcld |
|
146 |
|
zex |
|
147 |
146
|
mptex |
|
148 |
|
climres |
|
149 |
145 147 148
|
sylancl |
|
150 |
144 149
|
bitr3id |
|
151 |
9
|
reseq2i |
|
152 |
151
|
breq1i |
|
153 |
|
nnssz |
|
154 |
|
resmpt |
|
155 |
153 154
|
ax-mp |
|
156 |
155
|
breq1i |
|
157 |
|
climres |
|
158 |
10 147 157
|
mp2an |
|
159 |
152 156 158
|
3bitr3i |
|
160 |
150 159
|
bitr4di |
|
161 |
140 160
|
mpbird |
|
162 |
8 161
|
eqbrtrd |
|