Metamath Proof Explorer


Theorem hashnzfz2

Description: Special case of hashnzfz : the count of multiples in nℤ,n greater than one, restricted to an interval starting at two. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Hypotheses hashnzfz2.n φN2
hashnzfz2.k φK
Assertion hashnzfz2 φN2K=KN

Proof

Step Hyp Ref Expression
1 hashnzfz2.n φN2
2 hashnzfz2.k φK
3 2nn 2
4 uznnssnn 22
5 3 4 ax-mp 2
6 5 1 sselid φN
7 2z 2
8 7 a1i φ2
9 nnuz =1
10 2m1e1 21=1
11 10 fveq2i 21=1
12 9 11 eqtr4i =21
13 2 12 eleqtrdi φK21
14 6 8 13 hashnzfz φN2K=KN21N
15 10 oveq1i 21N=1N
16 15 fveq2i 21N=1N
17 0red φ0
18 6 nnrecred φ1N
19 6 nnred φN
20 6 nngt0d φ0<N
21 19 20 recgt0d φ0<1N
22 17 18 21 ltled φ01N
23 eluzle N22N
24 1 23 syl φ2N
25 6 nnzd φN
26 zlem1lt 2N2N21<N
27 7 25 26 sylancr φ2N21<N
28 24 27 mpbid φ21<N
29 10 28 eqbrtrrid φ1<N
30 6 nnrpd φN+
31 30 recgt1d φ1<N1N<1
32 29 31 mpbid φ1N<1
33 0p1e1 0+1=1
34 32 33 breqtrrdi φ1N<0+1
35 0z 0
36 flbi 1N01N=001N1N<0+1
37 18 35 36 sylancl φ1N=001N1N<0+1
38 22 34 37 mpbir2and φ1N=0
39 16 38 eqtrid φ21N=0
40 39 oveq2d φKN21N=KN0
41 2 nnred φK
42 41 6 nndivred φKN
43 42 flcld φKN
44 43 zcnd φKN
45 44 subid1d φKN0=KN
46 14 40 45 3eqtrd φN2K=KN