| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashnzfz2.n | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 2 |  | hashnzfz2.k | ⊢ ( 𝜑  →  𝐾  ∈  ℕ ) | 
						
							| 3 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 4 |  | uznnssnn | ⊢ ( 2  ∈  ℕ  →  ( ℤ≥ ‘ 2 )  ⊆  ℕ ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( ℤ≥ ‘ 2 )  ⊆  ℕ | 
						
							| 6 | 5 1 | sselid | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 7 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  2  ∈  ℤ ) | 
						
							| 9 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 10 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 11 | 10 | fveq2i | ⊢ ( ℤ≥ ‘ ( 2  −  1 ) )  =  ( ℤ≥ ‘ 1 ) | 
						
							| 12 | 9 11 | eqtr4i | ⊢ ℕ  =  ( ℤ≥ ‘ ( 2  −  1 ) ) | 
						
							| 13 | 2 12 | eleqtrdi | ⊢ ( 𝜑  →  𝐾  ∈  ( ℤ≥ ‘ ( 2  −  1 ) ) ) | 
						
							| 14 | 6 8 13 | hashnzfz | ⊢ ( 𝜑  →  ( ♯ ‘ ( (  ∥   “  { 𝑁 } )  ∩  ( 2 ... 𝐾 ) ) )  =  ( ( ⌊ ‘ ( 𝐾  /  𝑁 ) )  −  ( ⌊ ‘ ( ( 2  −  1 )  /  𝑁 ) ) ) ) | 
						
							| 15 | 10 | oveq1i | ⊢ ( ( 2  −  1 )  /  𝑁 )  =  ( 1  /  𝑁 ) | 
						
							| 16 | 15 | fveq2i | ⊢ ( ⌊ ‘ ( ( 2  −  1 )  /  𝑁 ) )  =  ( ⌊ ‘ ( 1  /  𝑁 ) ) | 
						
							| 17 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 18 | 6 | nnrecred | ⊢ ( 𝜑  →  ( 1  /  𝑁 )  ∈  ℝ ) | 
						
							| 19 | 6 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 20 | 6 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑁 ) | 
						
							| 21 | 19 20 | recgt0d | ⊢ ( 𝜑  →  0  <  ( 1  /  𝑁 ) ) | 
						
							| 22 | 17 18 21 | ltled | ⊢ ( 𝜑  →  0  ≤  ( 1  /  𝑁 ) ) | 
						
							| 23 |  | eluzle | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  2  ≤  𝑁 ) | 
						
							| 24 | 1 23 | syl | ⊢ ( 𝜑  →  2  ≤  𝑁 ) | 
						
							| 25 | 6 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 26 |  | zlem1lt | ⊢ ( ( 2  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 2  ≤  𝑁  ↔  ( 2  −  1 )  <  𝑁 ) ) | 
						
							| 27 | 7 25 26 | sylancr | ⊢ ( 𝜑  →  ( 2  ≤  𝑁  ↔  ( 2  −  1 )  <  𝑁 ) ) | 
						
							| 28 | 24 27 | mpbid | ⊢ ( 𝜑  →  ( 2  −  1 )  <  𝑁 ) | 
						
							| 29 | 10 28 | eqbrtrrid | ⊢ ( 𝜑  →  1  <  𝑁 ) | 
						
							| 30 | 6 | nnrpd | ⊢ ( 𝜑  →  𝑁  ∈  ℝ+ ) | 
						
							| 31 | 30 | recgt1d | ⊢ ( 𝜑  →  ( 1  <  𝑁  ↔  ( 1  /  𝑁 )  <  1 ) ) | 
						
							| 32 | 29 31 | mpbid | ⊢ ( 𝜑  →  ( 1  /  𝑁 )  <  1 ) | 
						
							| 33 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 34 | 32 33 | breqtrrdi | ⊢ ( 𝜑  →  ( 1  /  𝑁 )  <  ( 0  +  1 ) ) | 
						
							| 35 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 36 |  | flbi | ⊢ ( ( ( 1  /  𝑁 )  ∈  ℝ  ∧  0  ∈  ℤ )  →  ( ( ⌊ ‘ ( 1  /  𝑁 ) )  =  0  ↔  ( 0  ≤  ( 1  /  𝑁 )  ∧  ( 1  /  𝑁 )  <  ( 0  +  1 ) ) ) ) | 
						
							| 37 | 18 35 36 | sylancl | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( 1  /  𝑁 ) )  =  0  ↔  ( 0  ≤  ( 1  /  𝑁 )  ∧  ( 1  /  𝑁 )  <  ( 0  +  1 ) ) ) ) | 
						
							| 38 | 22 34 37 | mpbir2and | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 1  /  𝑁 ) )  =  0 ) | 
						
							| 39 | 16 38 | eqtrid | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 2  −  1 )  /  𝑁 ) )  =  0 ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( 𝐾  /  𝑁 ) )  −  ( ⌊ ‘ ( ( 2  −  1 )  /  𝑁 ) ) )  =  ( ( ⌊ ‘ ( 𝐾  /  𝑁 ) )  −  0 ) ) | 
						
							| 41 | 2 | nnred | ⊢ ( 𝜑  →  𝐾  ∈  ℝ ) | 
						
							| 42 | 41 6 | nndivred | ⊢ ( 𝜑  →  ( 𝐾  /  𝑁 )  ∈  ℝ ) | 
						
							| 43 | 42 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝐾  /  𝑁 ) )  ∈  ℤ ) | 
						
							| 44 | 43 | zcnd | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝐾  /  𝑁 ) )  ∈  ℂ ) | 
						
							| 45 | 44 | subid1d | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( 𝐾  /  𝑁 ) )  −  0 )  =  ( ⌊ ‘ ( 𝐾  /  𝑁 ) ) ) | 
						
							| 46 | 14 40 45 | 3eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( (  ∥   “  { 𝑁 } )  ∩  ( 2 ... 𝐾 ) ) )  =  ( ⌊ ‘ ( 𝐾  /  𝑁 ) ) ) |