| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( 0 || K -> 0 || K ) |
| 2 |
|
breq1 |
|- ( M = 0 -> ( M || K <-> 0 || K ) ) |
| 3 |
2
|
adantl |
|- ( ( N e. ZZ /\ M = 0 ) -> ( M || K <-> 0 || K ) ) |
| 4 |
|
oveq1 |
|- ( M = 0 -> ( M lcm N ) = ( 0 lcm N ) ) |
| 5 |
|
0z |
|- 0 e. ZZ |
| 6 |
|
lcmcom |
|- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 lcm N ) = ( N lcm 0 ) ) |
| 7 |
5 6
|
mpan |
|- ( N e. ZZ -> ( 0 lcm N ) = ( N lcm 0 ) ) |
| 8 |
|
lcm0val |
|- ( N e. ZZ -> ( N lcm 0 ) = 0 ) |
| 9 |
7 8
|
eqtrd |
|- ( N e. ZZ -> ( 0 lcm N ) = 0 ) |
| 10 |
4 9
|
sylan9eqr |
|- ( ( N e. ZZ /\ M = 0 ) -> ( M lcm N ) = 0 ) |
| 11 |
10
|
breq1d |
|- ( ( N e. ZZ /\ M = 0 ) -> ( ( M lcm N ) || K <-> 0 || K ) ) |
| 12 |
3 11
|
imbi12d |
|- ( ( N e. ZZ /\ M = 0 ) -> ( ( M || K -> ( M lcm N ) || K ) <-> ( 0 || K -> 0 || K ) ) ) |
| 13 |
1 12
|
mpbiri |
|- ( ( N e. ZZ /\ M = 0 ) -> ( M || K -> ( M lcm N ) || K ) ) |
| 14 |
13
|
3ad2antl3 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M || K -> ( M lcm N ) || K ) ) |
| 15 |
14
|
adantrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 16 |
15
|
ex |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M = 0 -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 17 |
|
breq1 |
|- ( N = 0 -> ( N || K <-> 0 || K ) ) |
| 18 |
17
|
adantl |
|- ( ( M e. ZZ /\ N = 0 ) -> ( N || K <-> 0 || K ) ) |
| 19 |
|
oveq2 |
|- ( N = 0 -> ( M lcm N ) = ( M lcm 0 ) ) |
| 20 |
|
lcm0val |
|- ( M e. ZZ -> ( M lcm 0 ) = 0 ) |
| 21 |
19 20
|
sylan9eqr |
|- ( ( M e. ZZ /\ N = 0 ) -> ( M lcm N ) = 0 ) |
| 22 |
21
|
breq1d |
|- ( ( M e. ZZ /\ N = 0 ) -> ( ( M lcm N ) || K <-> 0 || K ) ) |
| 23 |
18 22
|
imbi12d |
|- ( ( M e. ZZ /\ N = 0 ) -> ( ( N || K -> ( M lcm N ) || K ) <-> ( 0 || K -> 0 || K ) ) ) |
| 24 |
1 23
|
mpbiri |
|- ( ( M e. ZZ /\ N = 0 ) -> ( N || K -> ( M lcm N ) || K ) ) |
| 25 |
24
|
3ad2antl2 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( N || K -> ( M lcm N ) || K ) ) |
| 26 |
25
|
adantld |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 27 |
26
|
ex |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( N = 0 -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 28 |
|
neanior |
|- ( ( M =/= 0 /\ N =/= 0 ) <-> -. ( M = 0 \/ N = 0 ) ) |
| 29 |
|
lcmcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |
| 30 |
29
|
nn0zd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. ZZ ) |
| 31 |
|
dvds0 |
|- ( ( M lcm N ) e. ZZ -> ( M lcm N ) || 0 ) |
| 32 |
30 31
|
syl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) || 0 ) |
| 33 |
32
|
a1d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M || 0 /\ N || 0 ) -> ( M lcm N ) || 0 ) ) |
| 34 |
33
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K = 0 ) -> ( ( M || 0 /\ N || 0 ) -> ( M lcm N ) || 0 ) ) |
| 35 |
|
breq2 |
|- ( K = 0 -> ( M || K <-> M || 0 ) ) |
| 36 |
|
breq2 |
|- ( K = 0 -> ( N || K <-> N || 0 ) ) |
| 37 |
35 36
|
anbi12d |
|- ( K = 0 -> ( ( M || K /\ N || K ) <-> ( M || 0 /\ N || 0 ) ) ) |
| 38 |
|
breq2 |
|- ( K = 0 -> ( ( M lcm N ) || K <-> ( M lcm N ) || 0 ) ) |
| 39 |
37 38
|
imbi12d |
|- ( K = 0 -> ( ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) <-> ( ( M || 0 /\ N || 0 ) -> ( M lcm N ) || 0 ) ) ) |
| 40 |
39
|
adantl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K = 0 ) -> ( ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) <-> ( ( M || 0 /\ N || 0 ) -> ( M lcm N ) || 0 ) ) ) |
| 41 |
34 40
|
mpbird |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 42 |
41
|
adantrl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ K = 0 ) ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 43 |
42
|
adantllr |
|- ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ K = 0 ) ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 44 |
43
|
adantlrr |
|- ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( K e. ZZ /\ K = 0 ) ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 45 |
44
|
anassrs |
|- ( ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ K e. ZZ ) /\ K = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 46 |
|
nnabscl |
|- ( ( M e. ZZ /\ M =/= 0 ) -> ( abs ` M ) e. NN ) |
| 47 |
|
nnabscl |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) |
| 48 |
|
nnabscl |
|- ( ( K e. ZZ /\ K =/= 0 ) -> ( abs ` K ) e. NN ) |
| 49 |
|
lcmgcdlem |
|- ( ( ( abs ` M ) e. NN /\ ( abs ` N ) e. NN ) -> ( ( ( ( abs ` M ) lcm ( abs ` N ) ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) = ( abs ` ( ( abs ` M ) x. ( abs ` N ) ) ) /\ ( ( ( abs ` K ) e. NN /\ ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) ) ) |
| 50 |
49
|
simprd |
|- ( ( ( abs ` M ) e. NN /\ ( abs ` N ) e. NN ) -> ( ( ( abs ` K ) e. NN /\ ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) ) |
| 51 |
48 50
|
sylani |
|- ( ( ( abs ` M ) e. NN /\ ( abs ` N ) e. NN ) -> ( ( ( K e. ZZ /\ K =/= 0 ) /\ ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) ) |
| 52 |
46 47 51
|
syl2an |
|- ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( ( K e. ZZ /\ K =/= 0 ) /\ ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) ) |
| 53 |
52
|
expdimp |
|- ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) ) |
| 54 |
|
dvdsabsb |
|- ( ( M e. ZZ /\ K e. ZZ ) -> ( M || K <-> M || ( abs ` K ) ) ) |
| 55 |
|
zabscl |
|- ( K e. ZZ -> ( abs ` K ) e. ZZ ) |
| 56 |
|
absdvdsb |
|- ( ( M e. ZZ /\ ( abs ` K ) e. ZZ ) -> ( M || ( abs ` K ) <-> ( abs ` M ) || ( abs ` K ) ) ) |
| 57 |
55 56
|
sylan2 |
|- ( ( M e. ZZ /\ K e. ZZ ) -> ( M || ( abs ` K ) <-> ( abs ` M ) || ( abs ` K ) ) ) |
| 58 |
54 57
|
bitrd |
|- ( ( M e. ZZ /\ K e. ZZ ) -> ( M || K <-> ( abs ` M ) || ( abs ` K ) ) ) |
| 59 |
58
|
adantlr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( M || K <-> ( abs ` M ) || ( abs ` K ) ) ) |
| 60 |
|
dvdsabsb |
|- ( ( N e. ZZ /\ K e. ZZ ) -> ( N || K <-> N || ( abs ` K ) ) ) |
| 61 |
|
absdvdsb |
|- ( ( N e. ZZ /\ ( abs ` K ) e. ZZ ) -> ( N || ( abs ` K ) <-> ( abs ` N ) || ( abs ` K ) ) ) |
| 62 |
55 61
|
sylan2 |
|- ( ( N e. ZZ /\ K e. ZZ ) -> ( N || ( abs ` K ) <-> ( abs ` N ) || ( abs ` K ) ) ) |
| 63 |
60 62
|
bitrd |
|- ( ( N e. ZZ /\ K e. ZZ ) -> ( N || K <-> ( abs ` N ) || ( abs ` K ) ) ) |
| 64 |
63
|
adantll |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( N || K <-> ( abs ` N ) || ( abs ` K ) ) ) |
| 65 |
59 64
|
anbi12d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( M || K /\ N || K ) <-> ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) ) ) |
| 66 |
65
|
bicomd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) <-> ( M || K /\ N || K ) ) ) |
| 67 |
|
lcmabs |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) |
| 68 |
67
|
breq1d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) <-> ( M lcm N ) || ( abs ` K ) ) ) |
| 69 |
68
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) <-> ( M lcm N ) || ( abs ` K ) ) ) |
| 70 |
|
dvdsabsb |
|- ( ( ( M lcm N ) e. ZZ /\ K e. ZZ ) -> ( ( M lcm N ) || K <-> ( M lcm N ) || ( abs ` K ) ) ) |
| 71 |
30 70
|
sylan |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( M lcm N ) || K <-> ( M lcm N ) || ( abs ` K ) ) ) |
| 72 |
69 71
|
bitr4d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) <-> ( M lcm N ) || K ) ) |
| 73 |
66 72
|
imbi12d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) <-> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 74 |
73
|
adantrr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) <-> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 75 |
74
|
adantllr |
|- ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) <-> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 76 |
75
|
adantlrr |
|- ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) <-> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 77 |
53 76
|
mpbid |
|- ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 78 |
77
|
anassrs |
|- ( ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ K e. ZZ ) /\ K =/= 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 79 |
45 78
|
pm2.61dane |
|- ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ K e. ZZ ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 80 |
79
|
ex |
|- ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( K e. ZZ -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 81 |
80
|
an4s |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( K e. ZZ -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 82 |
28 81
|
sylan2br |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( K e. ZZ -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 83 |
82
|
impancom |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( -. ( M = 0 \/ N = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 84 |
83
|
3impa |
|- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( -. ( M = 0 \/ N = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 85 |
84
|
3comr |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 \/ N = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 86 |
16 27 85
|
ecase3d |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |