| Step |
Hyp |
Ref |
Expression |
| 1 |
|
off2.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) |
| 2 |
|
off2.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) |
| 3 |
|
off2.3 |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝑇 ) |
| 4 |
|
off2.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
off2.5 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 6 |
|
off2.6 |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = 𝐶 ) |
| 7 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 8 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
| 9 |
|
eqid |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) |
| 10 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 11 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 12 |
7 8 4 5 9 10 11
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑧 ∈ ( 𝐴 ∩ 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 13 |
6
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 ∩ 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 14 |
12 13
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝑆 ) |
| 16 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 17 |
6 16
|
eqsstrrdi |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 18 |
17
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ 𝐴 ) |
| 19 |
15 18
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑆 ) |
| 20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → 𝐺 : 𝐵 ⟶ 𝑇 ) |
| 21 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
| 22 |
6 21
|
eqsstrrdi |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) |
| 23 |
22
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ 𝐵 ) |
| 24 |
20 23
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑇 ) |
| 25 |
1
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) |
| 27 |
|
ovrspc2v |
⊢ ( ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑆 ∧ ( 𝐺 ‘ 𝑧 ) ∈ 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) → ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ∈ 𝑈 ) |
| 28 |
19 24 26 27
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ∈ 𝑈 ) |
| 29 |
14 28
|
fmpt3d |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) : 𝐶 ⟶ 𝑈 ) |