Metamath Proof Explorer


Theorem off2

Description: The function operation produces a function - alternative form with all antecedents as deduction. (Contributed by Thierry Arnoux, 17-Feb-2017)

Ref Expression
Hypotheses off2.1 φxSyTxRyU
off2.2 φF:AS
off2.3 φG:BT
off2.4 φAV
off2.5 φBW
off2.6 φAB=C
Assertion off2 φFRfG:CU

Proof

Step Hyp Ref Expression
1 off2.1 φxSyTxRyU
2 off2.2 φF:AS
3 off2.3 φG:BT
4 off2.4 φAV
5 off2.5 φBW
6 off2.6 φAB=C
7 2 ffnd φFFnA
8 3 ffnd φGFnB
9 eqid AB=AB
10 eqidd φzAFz=Fz
11 eqidd φzBGz=Gz
12 7 8 4 5 9 10 11 offval φFRfG=zABFzRGz
13 6 mpteq1d φzABFzRGz=zCFzRGz
14 12 13 eqtrd φFRfG=zCFzRGz
15 2 adantr φzCF:AS
16 inss1 ABA
17 6 16 eqsstrrdi φCA
18 17 sselda φzCzA
19 15 18 ffvelcdmd φzCFzS
20 3 adantr φzCG:BT
21 inss2 ABB
22 6 21 eqsstrrdi φCB
23 22 sselda φzCzB
24 20 23 ffvelcdmd φzCGzT
25 1 ralrimivva φxSyTxRyU
26 25 adantr φzCxSyTxRyU
27 ovrspc2v FzSGzTxSyTxRyUFzRGzU
28 19 24 26 27 syl21anc φzCFzRGzU
29 14 28 fmpt3d φFRfG:CU